Skip to main content
Log in

Characterization of CoCrMo alloy fabricated by sintering for biomedical materials

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The sintering kinetics of CoCrMo powders is investigated by dilatometry. Pre-alloyed spherical powders were pressed and then sintered between 1300 and 1375 °C. SEM images coupled to an EDS analysis are used to assess the microstructure of sintered samples. Microhardness of the sintered samples was also evaluated. Densification is carried out in both solid and semi-solid states. The final densification is dominated by the appearance of liquid which fills the remaining pores. The diffusion mechanism dominant are volume diffusion and viscous flux diffusion for the intermediate and last stage of sintering. Microhardness increased as the temperature did it too. Intermetallic compounds formed due to the liquid reaction was determined to be reach in molybdenum. The increment in hardness is attributed to the densification and stresses generated by the solidification of eutectic liquid. It is concluded that higher mechanical properties are obtained when sintering is performed at 1375 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. I. Milošev, Biomed. Appl. (2012). https://doi.org/10.1007/978-1-4614-3125-1_1

    Article  Google Scholar 

  2. A. Aherwar, A.K. Singh, A. Patnaik, J. TIBAO. (2016). https://doi.org/10.13140/RG.2.1.2501.5284

    Article  Google Scholar 

  3. G. Herranz, C. Berges, J.A. Naranjo, C. Garcia, I. Garrido, J. Mech. Behav. Biomed. Mater. 105, 1037065 (2020). https://doi.org/10.1016/j.jmbbm.2020.103706

    Article  CAS  Google Scholar 

  4. M.G. Minciuna, P. Vizureanu, D.C. Achitei, N. Ghiban, A.V. Sandu, N. Forna, J. Rev. Chim. 1, 335–338 (2014)

    Google Scholar 

  5. O. Sahin, A. Tuncdemir, A. Riza, H.A. Centikara, H.S. Guder, E. Sahin, J. Chin. Phys. Lett. 28(12), 1262011–1262014 (2011). https://doi.org/10.1088/0256-307X/28/12/126201

    Article  CAS  Google Scholar 

  6. B. Patel, G. Favaro, F. Inam, M.J. Reece, A. Angadji, W. Bonfield, J. Huang, M. Edirisinghe, J. Mater. Sci. Eng. C. 32(5), 1222–1229 (2012). https://doi.org/10.1016/j.msec.2012.03.012

    Article  CAS  Google Scholar 

  7. A. Mace, P. Khullar, C. Bouknight, J.L. Gilbert, J. Dent. Mater. 38(7), 1184–1193 (2022). https://doi.org/10.1016/j.dental.2022.06.021

    Article  CAS  Google Scholar 

  8. G.B. Bang, J.H. Park, W.R. Kim, S.K. Hyun, H.K. Park, T.W. Lee, H.G. Kim, J. Mater. Sci. Eng. C. 860, 144259 (2022). https://doi.org/10.1016/j.msea.2022.144259

    Article  CAS  Google Scholar 

  9. C. Song, Y. Yang, Y. Wang, D. Wangg, Int. J. Adv. Manuf. Technol. 75(1–4), 445–453 (2014). https://doi.org/10.1007/s00170-014-6150-7

    Article  Google Scholar 

  10. B.X. de Freitas, C.A. Nunes, S. dos Santos, J. Mater. Res. Technol. 8(2), 2052–2062 (2019). https://doi.org/10.1016/j.jmrt.2018.12.020

    Article  CAS  Google Scholar 

  11. M. Dourandish, D. Godlinski, A. Simchi, V. Firouzdor, J. Mater. Sci. Eng. A. 472(1–2), 338–346 (2008). https://doi.org/10.1016/j.msea.2007.03.043

    Article  CAS  Google Scholar 

  12. D. Rodrigues, S. R. Janasi, C. Fredericci, M. F. de Campos, J. A. Castro, in: “PM Biomaterials”, European Powder Metallurgy Association.

  13. W.C. Rodrigues, L.R. Broilo, L. Shaeffer, G. Knörnschild, F.R.M. Espinoza, J. Powder Technol. 206(3), 233–238 (2011). https://doi.org/10.1590/1980-5373-MR-2018-0391

    Article  CAS  Google Scholar 

  14. C.D. Zuraidawani, S.B. Jamaludin, M. Bari, J. Adv. Mater. Res. 173, 106–110 (2011). https://doi.org/10.4028/www.scientific.net/AMR.173.106

    Article  CAS  Google Scholar 

  15. E. Gholami, V. Demers, Int. J. Mech. Mechatron. Eng. 12, 754–759 (2018). https://doi.org/10.1999/1307-6892/10009287

    Article  Google Scholar 

  16. N. Abdullah, M.A. Omar, S.B. Jamaludin, N.M. Zainon, N. Roslani, B. Meh, A.Z. Omar, J. Adv. Mat. Res. 879, 102–106 (2014). https://doi.org/10.3390/ma16113991

    Article  CAS  Google Scholar 

  17. A.R. Abdullah, N.A.N. Dandang, N.Z. Khalil, W.S.W. Harun, Mater. Sci. Eng. 257, 012010 (2017). https://doi.org/10.1088/1757-899X/257/1/012010

    Article  Google Scholar 

  18. G. Matula, A. Szatkowska, K. Matus, B. Tomiczek, M. Pawlyta, J. Mater. 14(8), 2010 (2021). https://doi.org/10.3390/ma14082010

    Article  CAS  Google Scholar 

  19. Z. Doni, A.C. Alves, F. Toptan, L.A. Rocha, M. Buciumeanu, L. Palaghian, F.S. Silva, Tribol. Int. 52, 47–57 (2015). https://doi.org/10.1016/j.triboint.2015.04.009

    Article  CAS  Google Scholar 

  20. B. Henriques, A. Bagheri, M. Gasik, J.C.M. Souza, O. Carvalho, F.S. Silva, R.M.D. Nascimiento, J. Mater. Des. 83, 829–834 (2015). https://doi.org/10.1016/j.matdes.2015.06.069

    Article  CAS  Google Scholar 

  21. M. Buciumeanu, A. Bagheri, J.C.M. Souza, F.S. Silva, B. Henriques, J. Tribol. Int. 97, 423–430 (2016). https://doi.org/10.1016/j.triboint.2016.02.007

    Article  CAS  Google Scholar 

  22. B. Patel, F. Inam, M. Reece, M. Edirisinghe, W. Bonfield, J. Huang, A. Angadji, J. R. Soc. Intreface. 7(52), 1641–1645 (2010). https://doi.org/10.1098/rsif.2010.0036

    Article  CAS  Google Scholar 

  23. N. Vicente, A. Fedrizzi, N. Bazzanella, F. Casari, F. Buccioti, A. Molinari, J. Powder Metall. 56(2), 143–148 (2013). https://doi.org/10.1179/1743290112Y.0000000040

    Article  CAS  Google Scholar 

  24. L.C. Pathak, S.K. Mishra, P.G. Mukunda, M.M. Godkhindi, D. Bhattacharya, K.L. Chopra, J. Mater. 29(20), 5455–5461 (1994). https://doi.org/10.1007/BF01171561

    Article  CAS  Google Scholar 

  25. B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda, P. Ramakrishnan, Mater. Sci. Eng. A 396(1–2), 25–262 (2005). https://doi.org/10.1016/j.msea.2005.01.016

    Article  CAS  Google Scholar 

  26. B. Paul, D. Jain, A.C. Bidaye, I.G. Sharma, C.G.S. Pillai, Thermochim. Acta 488(1–2), 54–59 (2009). https://doi.org/10.1016/j.tca.2009.01.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to the Coordinación de la Investigación Científica (CIC) of the UMSNH.

Funding

This research was supported by [the National Council of Humanities, Science and Technology CONAHCYT via postdoctoral stage of J.L. Cabezas-Villa [CVU 511121] and the doctoral fellowship of A. M. Garcia-Carrillo [CVU 1008033].

Author information

Authors and Affiliations

Authors

Contributions

L-R: Writing—review & editing, Formal analysis. AMG-C: Investigation; Writing—original draft, Experimental set up. LO: Conceptualization; Project administration, Writing—original draft. JLC-V: Supervision; Experimental set up; Validation.

Corresponding author

Correspondence to A. M. Garcia-Carrillo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemus-Ruiz, J., Garcia-Carrillo, A.M., Cabezas-Villa, J.L. et al. Characterization of CoCrMo alloy fabricated by sintering for biomedical materials. MRS Advances 8, 1107–1111 (2023). https://doi.org/10.1557/s43580-023-00691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00691-2

Navigation