Skip to main content

Advertisement

Log in

SRC-led materials research: 40 years ago, and now

  • Introduction
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Today, we are living through a pivotal moment when the semiconductor industry is moving towards 3D-integration including the close integration of logic and memory, the tighter integration of mixed-signal circuits, spintronic, embedded memories, sensors, communications, and improved power management. It is expected that 3D monolithic and heterogeneous integration will result in a new, truly multi-functional platform that drives continued system progress in the coming decades. Thus, over the next 40 years, the semiconductor industry will require significant innovation. At the heart of that is the need for significant contributions from the materials ecosystem to drive materials from the laboratory to the factory. For this perspective article, a selected group of distinguished SRC Scholars have been invited to present their research in the context of the potential impact that their work will drive for the future of microelectronics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Reproduced with permission from Perez et al. “High Thermal Conductivity of Sub-Micron Aluminum Nitride Thin Films Sputter-Deposited at Low Temperature”, ACS Nano, in press (2023) and Chen et al. “Electrical and Thermal Properties of Boron Nitride Thin Films Deposited at Room Temperature” in preparation)

Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

References

  1. J.D. Plummer et al., Point-defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289 (1989)

    Article  Google Scholar 

  2. K.F. Schuegraf, Hole injection SiO2 breakdown model for very-low voltage lifetime extrapolation. IEEE Trans. Electron. Dev. 41, 761 (1994)

    Article  CAS  Google Scholar 

  3. https://electronics-sourcing.com/2021/10/21/nand-flash-memory-market-soars-as-demand-rises/

  4. S.P. Murarka, R.J. Gutmann, A.E. Kaloyeros, W.A. Lanford, Advanced multilayer metallization schemes with copper as interconnection metal. Thin Solid Films 236, 257 (1993)

    Article  CAS  Google Scholar 

  5. Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, Copper transport in thermal SiO2. J. Electrochem. Soc. 140, 2427 (1993)

    Article  CAS  Google Scholar 

  6. M. Houssa, A. Dimoulas, A. Molle, 2D Materials for Nanoelectronics (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  7. M.C. Lemme, D. Akinwande, C. Huyghebaert et al., 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022). https://doi.org/10.1038/s41467-022-29001-4

    Article  CAS  Google Scholar 

  8. C.-T. Sah, Evolution of the MOS transistor-from conception to VLSI. Proc. IEEE (1988). https://doi.org/10.1109/5.16328

    Article  Google Scholar 

  9. S. Ross, A. Sussman, Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889–892 (1955)

    Article  CAS  Google Scholar 

  10. Q. Li, Q. Zhou, L. Shi, Q. Chen, J. Wang, Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 7, 4291–4312 (2019)

    Article  CAS  Google Scholar 

  11. S. Chuang et al., MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014)

    Article  CAS  Google Scholar 

  12. A.A. Bessonov et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2014)

    Article  Google Scholar 

  13. A. Yoon, J.H. Kim, J. Yoon, Y. Lee, Z.V. Lee, Waals epitaxial formation of atomic layered α-MoO3 on MoS2 by oxidation. ACS Appl. Mater. Interfaces 12, 22029–22036 (2020)

    Article  CAS  Google Scholar 

  14. H. Liu, N. Han, J. Zhao, Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. RSC Adv. 5, 17572–17581 (2015)

    Article  CAS  Google Scholar 

  15. H. Zhu et al., Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 8, 19119–19126 (2016)

    Article  CAS  Google Scholar 

  16. M.H. Alam et al., Wafer-scalable single-layer amorphous molybdenum trioxide. ACS Nano 16, 3756–3767 (2022)

    Article  CAS  Google Scholar 

  17. K. Reidy et al., Atomic-scale mechanisms of MoS2 oxidation for kinetic control of MoS2/MoO3 interfaces. Nano Lett. 23, 5894–5901 (2023)

    Article  CAS  Google Scholar 

  18. Y. Li et al., Oxygen vacancy-rich MoO3-x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 9, 803–810 (2019)

    Article  CAS  Google Scholar 

  19. M. Mleczko et al., HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, 1700481 (2017)

    Article  Google Scholar 

  20. M. Strauss et al., Automated S/TEM metrology on advanced semiconductor gate structures. Proc. Metrol. Insp. Process Control Microlithogr. 8324, 346–357 (2012)

    Google Scholar 

  21. P.C. Shen, C. Su, Y. Lin et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9

    Article  CAS  Google Scholar 

  22. C. Huyghebaert et al., 2D materials: roadmap to CMOS integration. IEEE Int. Electron Dev. Meet. (IEDM) (2018). https://doi.org/10.1109/IEDM.2018.8614679

    Article  Google Scholar 

  23. S. Das, A. Sebastian, E. Pop et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1

    Article  CAS  Google Scholar 

  24. J. Wang, S.-C. Zhang, Topological states of condensed matter. Nat. Mater. 16(11), 1062–1067 (2017). https://doi.org/10.1038/nmat5012

    Article  CAS  Google Scholar 

  25. M.G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B.A. Bernevig, Z. Wang, A complete catalogue of high-quality topological materials. Nature 566(7745), 480–485 (2019). https://doi.org/10.1038/s41586-019-0954-4

    Article  CAS  Google Scholar 

  26. X. Huang et al., Observation of the chiral-anomaly-induced negative magnetoresistance in 3d Weyl semimetal TaAs. Phys. Rev. X 5(3), 31023 (2015). https://doi.org/10.1103/PhysRevX.5.031023

    Article  CAS  Google Scholar 

  27. Von Thun, M. Qualification and reliability of MRAM toggle memory designed for space applications. Everspin technologies applications. 2020. https://www.everspin.com/aerospace

  28. A. Hirohata et al., Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711

    Article  CAS  Google Scholar 

  29. A. Sengupta, K. Roy, Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing. Appl. Phys. Rev. 4, 041105 (2017)

    Article  Google Scholar 

  30. M. Neupane et al., Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5(1), 3786 (2014). https://doi.org/10.1038/ncomms4786

    Article  CAS  Google Scholar 

  31. S.-Y. Xu et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349(6248), 613–617 (2015). https://doi.org/10.1126/science.aaa9297

    Article  CAS  Google Scholar 

  32. H. Wang et al., Fermi level dependent spin pumping from a magnetic insulator into a topological insulator. Phys. Rev. Res. 1(1), 12014 (2019). https://doi.org/10.1103/PhysRevResearch.1.012014

    Article  CAS  Google Scholar 

  33. Y. Ou et al., ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics. Nat. Commun. 13(1), 2972 (2022). https://doi.org/10.1038/s41467-022-30738-1

    Article  CAS  Google Scholar 

  34. W. Yanez et al., Spin and charge interconversion in dirac-semimetal thin films. Phys. Rev. Appl. 16(5), 54031 (2021). https://doi.org/10.1103/PhysRevApplied.16.054031

    Article  CAS  Google Scholar 

  35. W. Yanez et al., Giant dampinglike-torque efficiency in naturally oxidized polycrystalline TaAs thin films. Phys. Rev. Appl. 18(5), 54004 (2022). https://doi.org/10.1103/PhysRevApplied.18.054004

    Article  CAS  Google Scholar 

  36. M.M.S. Aly et al., Energy-efficient abundant-data computing: the N3XT 1000x. Computer 48, 24–33 (2015)

    Article  Google Scholar 

  37. D.B. Ingerly et al. Foveros: 3D integration and the use of face-to-face chip stacking for logic devices. In: 2019 IEEE international electron devices meeting (IEDM), pp 19.6.1–.6.4

  38. F. Deprat et al., Dielectrics stability for intermediate BEOL in 3D sequential integration. Microelectron. Eng. 167, 90–94 (2017)

    Article  CAS  Google Scholar 

  39. C. Fenouillet-Beranger, L. Brunet, P. Batude, L. Brevard, X. Garros, M. Cassé, J. Lacord, B. Sklenard, P. Acosta-Alba, S. Kerdilès, A. Tavernier, C. Vizioz, P. Besson, R. Gassilloud, J.M. Pedini, J. Kanyandekwe, F. Mazen, A. Magalhaes-Lucas, C. Cavalcante, D. Bosch, M. Ribotta, V. Lapras, M. Vinet, F. Andrieu, J. Arcamone, A review of low temperature process modules leading up to the first (≤ 500 °C) planar FDSOI CMOS Devices for 3-D sequential integration. IEEE Trans. Electron Dev. 68, 3142–3148 (2021)

    Article  CAS  Google Scholar 

  40. J. Schmitz, Low temperature thin films for next-generation microelectronics (invited). Surf. Coat. Technol. 343, 83–88 (2018)

    Article  CAS  Google Scholar 

  41. J.K. Sprenger, H. Sun, A.S. Cavanagh, S.M. George, Electron-enhanced atomic layer deposition of silicon thin films at room temperature. J. Vac. Sci. Technol. A 36, 01A118 (2017)

    Article  Google Scholar 

  42. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014)

    Article  CAS  Google Scholar 

  43. S.T. Uedam, A. McLeod, M. Chen, C. Perez, E. Pop, D. Alvarez, A.C. Kummel Deposition of high thermal conductivity AlN heat spreader films. In: 2020 International symposium on VLSI technology, systems and applications (VLSI-TSA), 2020, pp. 110–1

  44. J.K. Sprenger, H. Sun, A.S. Cavanagh, A. Roshko, P.T. Blanchard, S.M. George, Electron-enhanced atomic layer deposition of boron nitride thin films at room temperature and 100 °C. J. Phys. Chem. C 122, 9455–9464 (2018)

    Article  CAS  Google Scholar 

  45. M. Malakoutian, X. Zheng, K. Woo, R. Soman, A. Kasperovich, J. Pomeroy, M. Kuball, S. Chowdhury, Low thermal budget growth of near-isotropic diamond grains for heat spreading in semiconductor devices. Adv. Funct. Mater. 32, 2208997 (2022)

    Article  CAS  Google Scholar 

  46. S. Fan, Q.A. Vu, M.D. Tran, S. Adhikari, Y.H. Lee, Transfer assembly for two-dimensional van der Waals heterostructures. 2D Mater. 7, 022005 (2020)

    Article  CAS  Google Scholar 

  47. M. Malakoutian, C. Ren, K. Woo, H. Li, S. Chowdhury, Development of polycrystalline diamond compatible with the latest N-polar GaN mm-wave technology. Cryst. Growth Des. 21, 2624 (2021)

    Article  CAS  Google Scholar 

  48. M. Malakoutian, R.L. Xu, C. Ren, S. Pasayat, I. Sayed, E. Pop, and S. Chowdhury, 2021 IEEE 8th Work. Wide Bandgap Power Devices Appl. WiPDA 2021—Proc. 70 (2021)

  49. M. Malakoutian, M.A. Laurent, S. Chowdhury, A study on the growth window of polycrystalline diamond on Si3N4-coated N-polar GaN. Crystals 9, 1 (2019)

    Article  CAS  Google Scholar 

  50. X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle, J. Appl. Phys. 96, 2232 (2004)

    Article  CAS  Google Scholar 

  51. V. Goyal, A.V. Sumant, D. Teweldebrhan, A.A. Balandin, Low temperature growth of ultrananocrystalline diamond. Adv. Funct. Mater. 22, 1525 (2012)

    Article  CAS  Google Scholar 

  52. M. Malakoutian, X. Zheng, K. Woo, R. Soman, A. Kasperovich, J. Pomeroy, M. Kuball, S. Chowdhury, Adv. Funct. Mater. 32, 2208997 (2022)

    Article  CAS  Google Scholar 

  53. M. Malakoutian, D.E. Field, N.J. Hines, S. Pasayat, S. Graham, M. Kuball, S. Chowdhury, Low thermal budget growth of near-isotropic diamond grains for heat spreading in semiconductor devices. ACS Appl. Mater. Interfaces 13, 60553 (2021)

    Article  CAS  Google Scholar 

  54. W. Miao, M. Wang, Importance of electron-phonon coupling in thermal transport in metal/semiconductor multilayer films. Int. J. Heat Mass Transf. 200, 123538 (2023). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2022.123538

    Article  CAS  Google Scholar 

  55. R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, S.M. George, Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303(5660), 989–990 (1979). https://doi.org/10.1126/science.1093711

    Article  CAS  Google Scholar 

  56. Y. Zhou et al., High moisture-resistive MoOx/metal/graphite barrier films with excellent thermal dissipation for the encapsulation of organic electronics. Org. Electron. 86, 105817 (2020). https://doi.org/10.1016/J.ORGEL.2020.105817

    Article  CAS  Google Scholar 

  57. N. Gong et al., Atomic layer deposition of Al2O3 thin films for corrosion protections of additive manufactured and wrought stainless steels 316L. Mater. Lett. 331, 133434 (2023). https://doi.org/10.1016/J.MATLET.2022.133434

    Article  CAS  Google Scholar 

  58. C.M. MacRae, Ultra-thin metal films for imaging low-conductivity surfaces by scanning tunneling microscopy. Ultramicroscopy 42–44, 1337–1339 (1992). https://doi.org/10.1016/0304-3991(92)90444-O

    Article  Google Scholar 

  59. B. Sabi, Advanced packaging ecosystem: challenges and solutions. Int. Semicond. Exec. Summits-US (2022). https://doi.org/10.1109/vlsi-tsa54299.2022.9771035

    Article  Google Scholar 

  60. Y. Zhu, P.R. Chiarot, Structure of nanoparticle aggregate films built using pulsed-mode electrospray atomization. J. Mater. Sci. 54(8), 6122–6139 (2019). https://doi.org/10.1007/s10853-019-03349-3

    Article  CAS  Google Scholar 

  61. H. Hu, J.P. Singer, C.O. Osuji, Morphology development in thin films of a lamellar block copolymer deposited by electrospray. Macromolecules 47(16), 5703–5710 (2014). https://doi.org/10.1021/MA500376N/SUPPL_FILE/MA500376N_SI_001.PDF

    Article  CAS  Google Scholar 

  62. A. Tycova, J. Prikryl, A. Kotzianova, V. Datinska, V. Velebny, F. Foret, Electrospray: more than just an ionization source. Electrophoresis 42(1–2), 103–121 (2021). https://doi.org/10.1002/elps.202000191

    Article  CAS  Google Scholar 

  63. A. Jaworek, A.T. Sobczyk, A. Krupa, Electrospray application to powder production and surface coating. J. Aerosol Sci. 125, 57–92 (2018). https://doi.org/10.1016/J.JAEROSCI.2018.04.006

    Article  CAS  Google Scholar 

  64. E.E. Pawliczak, B.J. Kingsley, P.R. Chiarot, Structure and properties of electrospray printed polymeric films. MRS Adv 7(29), 635–640 (2022). https://doi.org/10.1557/s43580-022-00340-0

    Article  CAS  Google Scholar 

  65. L. Lei et al., Obtaining thickness-limited electrospray deposition for 3D coating. ACS Appl. Mater. Interfaces 10(13), 11175–11188 (2018). https://doi.org/10.1021/acsami.7b19812

    Article  CAS  Google Scholar 

  66. B.J. Kingsley, E.E. Pawliczak, T.R. Hurley, P.R. Chiarot, Electrospray printing of polyimide films using passive material focusing. ACS Appl Polym Mater 3(12), 6274–6284 (2021). https://doi.org/10.1021/acsapm.1c01073

    Article  CAS  Google Scholar 

  67. S. Erickson, G. McKerricher, S. Hannani, and M. Lemieux, EMI shielding for system in package using nozzle-less ultrasonic spray coating and silver particle free ink. In: 2020 International Wafer Level Packaging Conference, IWLPC 2020, Oct. 2020. https://doi.org/10.23919/IWLPC52010.2020.9375863

  68. I.B. Rietveld, K. Kobayashi, H. Yamada, K. Matsushige, Morphology control of poly(vinylidene fluoride) thin film made with electrospray. J. Colloid Interface Sci. 298(2), 639–651 (2006). https://doi.org/10.1016/J.JCIS.2005.12.028

    Article  CAS  Google Scholar 

  69. SIA/SRC Decadal Plan for Semiconductors (SRC 2021) https://www.src.org/about/decadal-plan/ (Accessed May 30, 2023)

  70. Microelectronics and advanced packaging technologies roadmap https://srcmapt.org/ (Accessed May 30, 2023)

Download references

Acknowledgments

This work was funded in part by Semiconductor Research Corporation (SRC) and the National Institute of Standards and Technology (NIST). The authors would like to acknowledge their colleagues for useful discussions and feedback on the article: M.C.—Dr. Eric Pop, M.M.—Dr. Srabanti Chowdhury, H.M.—Dr. Gregory Parsons, E.P.—Dr. Paul Chiarot, K.R.—Dr. Frances M. Ross and Dr. Rafael Jaramillo, and W.Y.—Dr. Nitin Samarth and Dr. Yongxi Ou. Also, TY and VZ would like to thank Dilcia Paguada for her help with the article graphics.

Funding

This study was funded by the National Institute of Standards and Technology, Semiconductor Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

HM contributed to Sect. “Expanding the semiconductor patterning toolbox with simultaneous deposition and etching,” HR contributed to Sect. “Two-dimensional materials and devices,” WY contributed to Sect. “Spin dependent phenomena in topological semimetals,” MC contributed to Sect. “Thermal materials,” MM contributed to Sect. “Low-temperature diamond as an effective self-heating spreader,” and EP contributed to Sect. “Packaging materials and processes.” VZ and TY contributed to Sects. “Introduction” and “Summary” as well as provided overall editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Victor Zhirnov.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Victor Zhirnov was an editor of this journal during the review and decision stage. For the MRS Advances policy on review and publication of manuscripts authored by editors, please refer to mrs.org/editor-manuscripts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirnov, V., Chen, M.E., Malakoutian, M. et al. SRC-led materials research: 40 years ago, and now. MRS Advances 8, 751–762 (2023). https://doi.org/10.1557/s43580-023-00665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00665-4

Navigation