Abstract
Today, we are living through a pivotal moment when the semiconductor industry is moving towards 3D-integration including the close integration of logic and memory, the tighter integration of mixed-signal circuits, spintronic, embedded memories, sensors, communications, and improved power management. It is expected that 3D monolithic and heterogeneous integration will result in a new, truly multi-functional platform that drives continued system progress in the coming decades. Thus, over the next 40 years, the semiconductor industry will require significant innovation. At the heart of that is the need for significant contributions from the materials ecosystem to drive materials from the laboratory to the factory. For this perspective article, a selected group of distinguished SRC Scholars have been invited to present their research in the context of the potential impact that their work will drive for the future of microelectronics.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable.
References
J.D. Plummer et al., Point-defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289 (1989)
K.F. Schuegraf, Hole injection SiO2 breakdown model for very-low voltage lifetime extrapolation. IEEE Trans. Electron. Dev. 41, 761 (1994)
https://electronics-sourcing.com/2021/10/21/nand-flash-memory-market-soars-as-demand-rises/
S.P. Murarka, R.J. Gutmann, A.E. Kaloyeros, W.A. Lanford, Advanced multilayer metallization schemes with copper as interconnection metal. Thin Solid Films 236, 257 (1993)
Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, Copper transport in thermal SiO2. J. Electrochem. Soc. 140, 2427 (1993)
M. Houssa, A. Dimoulas, A. Molle, 2D Materials for Nanoelectronics (CRC Press, Boca Raton, 2016)
M.C. Lemme, D. Akinwande, C. Huyghebaert et al., 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022). https://doi.org/10.1038/s41467-022-29001-4
C.-T. Sah, Evolution of the MOS transistor-from conception to VLSI. Proc. IEEE (1988). https://doi.org/10.1109/5.16328
S. Ross, A. Sussman, Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889–892 (1955)
Q. Li, Q. Zhou, L. Shi, Q. Chen, J. Wang, Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 7, 4291–4312 (2019)
S. Chuang et al., MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014)
A.A. Bessonov et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2014)
A. Yoon, J.H. Kim, J. Yoon, Y. Lee, Z.V. Lee, Waals epitaxial formation of atomic layered α-MoO3 on MoS2 by oxidation. ACS Appl. Mater. Interfaces 12, 22029–22036 (2020)
H. Liu, N. Han, J. Zhao, Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. RSC Adv. 5, 17572–17581 (2015)
H. Zhu et al., Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 8, 19119–19126 (2016)
M.H. Alam et al., Wafer-scalable single-layer amorphous molybdenum trioxide. ACS Nano 16, 3756–3767 (2022)
K. Reidy et al., Atomic-scale mechanisms of MoS2 oxidation for kinetic control of MoS2/MoO3 interfaces. Nano Lett. 23, 5894–5901 (2023)
Y. Li et al., Oxygen vacancy-rich MoO3-x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 9, 803–810 (2019)
M. Mleczko et al., HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, 1700481 (2017)
M. Strauss et al., Automated S/TEM metrology on advanced semiconductor gate structures. Proc. Metrol. Insp. Process Control Microlithogr. 8324, 346–357 (2012)
P.C. Shen, C. Su, Y. Lin et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
C. Huyghebaert et al., 2D materials: roadmap to CMOS integration. IEEE Int. Electron Dev. Meet. (IEDM) (2018). https://doi.org/10.1109/IEDM.2018.8614679
S. Das, A. Sebastian, E. Pop et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1
J. Wang, S.-C. Zhang, Topological states of condensed matter. Nat. Mater. 16(11), 1062–1067 (2017). https://doi.org/10.1038/nmat5012
M.G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B.A. Bernevig, Z. Wang, A complete catalogue of high-quality topological materials. Nature 566(7745), 480–485 (2019). https://doi.org/10.1038/s41586-019-0954-4
X. Huang et al., Observation of the chiral-anomaly-induced negative magnetoresistance in 3d Weyl semimetal TaAs. Phys. Rev. X 5(3), 31023 (2015). https://doi.org/10.1103/PhysRevX.5.031023
Von Thun, M. Qualification and reliability of MRAM toggle memory designed for space applications. Everspin technologies applications. 2020. https://www.everspin.com/aerospace
A. Hirohata et al., Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
A. Sengupta, K. Roy, Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing. Appl. Phys. Rev. 4, 041105 (2017)
M. Neupane et al., Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5(1), 3786 (2014). https://doi.org/10.1038/ncomms4786
S.-Y. Xu et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349(6248), 613–617 (2015). https://doi.org/10.1126/science.aaa9297
H. Wang et al., Fermi level dependent spin pumping from a magnetic insulator into a topological insulator. Phys. Rev. Res. 1(1), 12014 (2019). https://doi.org/10.1103/PhysRevResearch.1.012014
Y. Ou et al., ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics. Nat. Commun. 13(1), 2972 (2022). https://doi.org/10.1038/s41467-022-30738-1
W. Yanez et al., Spin and charge interconversion in dirac-semimetal thin films. Phys. Rev. Appl. 16(5), 54031 (2021). https://doi.org/10.1103/PhysRevApplied.16.054031
W. Yanez et al., Giant dampinglike-torque efficiency in naturally oxidized polycrystalline TaAs thin films. Phys. Rev. Appl. 18(5), 54004 (2022). https://doi.org/10.1103/PhysRevApplied.18.054004
M.M.S. Aly et al., Energy-efficient abundant-data computing: the N3XT 1000x. Computer 48, 24–33 (2015)
D.B. Ingerly et al. Foveros: 3D integration and the use of face-to-face chip stacking for logic devices. In: 2019 IEEE international electron devices meeting (IEDM), pp 19.6.1–.6.4
F. Deprat et al., Dielectrics stability for intermediate BEOL in 3D sequential integration. Microelectron. Eng. 167, 90–94 (2017)
C. Fenouillet-Beranger, L. Brunet, P. Batude, L. Brevard, X. Garros, M. Cassé, J. Lacord, B. Sklenard, P. Acosta-Alba, S. Kerdilès, A. Tavernier, C. Vizioz, P. Besson, R. Gassilloud, J.M. Pedini, J. Kanyandekwe, F. Mazen, A. Magalhaes-Lucas, C. Cavalcante, D. Bosch, M. Ribotta, V. Lapras, M. Vinet, F. Andrieu, J. Arcamone, A review of low temperature process modules leading up to the first (≤ 500 °C) planar FDSOI CMOS Devices for 3-D sequential integration. IEEE Trans. Electron Dev. 68, 3142–3148 (2021)
J. Schmitz, Low temperature thin films for next-generation microelectronics (invited). Surf. Coat. Technol. 343, 83–88 (2018)
J.K. Sprenger, H. Sun, A.S. Cavanagh, S.M. George, Electron-enhanced atomic layer deposition of silicon thin films at room temperature. J. Vac. Sci. Technol. A 36, 01A118 (2017)
R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014)
S.T. Uedam, A. McLeod, M. Chen, C. Perez, E. Pop, D. Alvarez, A.C. Kummel Deposition of high thermal conductivity AlN heat spreader films. In: 2020 International symposium on VLSI technology, systems and applications (VLSI-TSA), 2020, pp. 110–1
J.K. Sprenger, H. Sun, A.S. Cavanagh, A. Roshko, P.T. Blanchard, S.M. George, Electron-enhanced atomic layer deposition of boron nitride thin films at room temperature and 100 °C. J. Phys. Chem. C 122, 9455–9464 (2018)
M. Malakoutian, X. Zheng, K. Woo, R. Soman, A. Kasperovich, J. Pomeroy, M. Kuball, S. Chowdhury, Low thermal budget growth of near-isotropic diamond grains for heat spreading in semiconductor devices. Adv. Funct. Mater. 32, 2208997 (2022)
S. Fan, Q.A. Vu, M.D. Tran, S. Adhikari, Y.H. Lee, Transfer assembly for two-dimensional van der Waals heterostructures. 2D Mater. 7, 022005 (2020)
M. Malakoutian, C. Ren, K. Woo, H. Li, S. Chowdhury, Development of polycrystalline diamond compatible with the latest N-polar GaN mm-wave technology. Cryst. Growth Des. 21, 2624 (2021)
M. Malakoutian, R.L. Xu, C. Ren, S. Pasayat, I. Sayed, E. Pop, and S. Chowdhury, 2021 IEEE 8th Work. Wide Bandgap Power Devices Appl. WiPDA 2021—Proc. 70 (2021)
M. Malakoutian, M.A. Laurent, S. Chowdhury, A study on the growth window of polycrystalline diamond on Si3N4-coated N-polar GaN. Crystals 9, 1 (2019)
X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle, J. Appl. Phys. 96, 2232 (2004)
V. Goyal, A.V. Sumant, D. Teweldebrhan, A.A. Balandin, Low temperature growth of ultrananocrystalline diamond. Adv. Funct. Mater. 22, 1525 (2012)
M. Malakoutian, X. Zheng, K. Woo, R. Soman, A. Kasperovich, J. Pomeroy, M. Kuball, S. Chowdhury, Adv. Funct. Mater. 32, 2208997 (2022)
M. Malakoutian, D.E. Field, N.J. Hines, S. Pasayat, S. Graham, M. Kuball, S. Chowdhury, Low thermal budget growth of near-isotropic diamond grains for heat spreading in semiconductor devices. ACS Appl. Mater. Interfaces 13, 60553 (2021)
W. Miao, M. Wang, Importance of electron-phonon coupling in thermal transport in metal/semiconductor multilayer films. Int. J. Heat Mass Transf. 200, 123538 (2023). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2022.123538
R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, S.M. George, Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303(5660), 989–990 (1979). https://doi.org/10.1126/science.1093711
Y. Zhou et al., High moisture-resistive MoOx/metal/graphite barrier films with excellent thermal dissipation for the encapsulation of organic electronics. Org. Electron. 86, 105817 (2020). https://doi.org/10.1016/J.ORGEL.2020.105817
N. Gong et al., Atomic layer deposition of Al2O3 thin films for corrosion protections of additive manufactured and wrought stainless steels 316L. Mater. Lett. 331, 133434 (2023). https://doi.org/10.1016/J.MATLET.2022.133434
C.M. MacRae, Ultra-thin metal films for imaging low-conductivity surfaces by scanning tunneling microscopy. Ultramicroscopy 42–44, 1337–1339 (1992). https://doi.org/10.1016/0304-3991(92)90444-O
B. Sabi, Advanced packaging ecosystem: challenges and solutions. Int. Semicond. Exec. Summits-US (2022). https://doi.org/10.1109/vlsi-tsa54299.2022.9771035
Y. Zhu, P.R. Chiarot, Structure of nanoparticle aggregate films built using pulsed-mode electrospray atomization. J. Mater. Sci. 54(8), 6122–6139 (2019). https://doi.org/10.1007/s10853-019-03349-3
H. Hu, J.P. Singer, C.O. Osuji, Morphology development in thin films of a lamellar block copolymer deposited by electrospray. Macromolecules 47(16), 5703–5710 (2014). https://doi.org/10.1021/MA500376N/SUPPL_FILE/MA500376N_SI_001.PDF
A. Tycova, J. Prikryl, A. Kotzianova, V. Datinska, V. Velebny, F. Foret, Electrospray: more than just an ionization source. Electrophoresis 42(1–2), 103–121 (2021). https://doi.org/10.1002/elps.202000191
A. Jaworek, A.T. Sobczyk, A. Krupa, Electrospray application to powder production and surface coating. J. Aerosol Sci. 125, 57–92 (2018). https://doi.org/10.1016/J.JAEROSCI.2018.04.006
E.E. Pawliczak, B.J. Kingsley, P.R. Chiarot, Structure and properties of electrospray printed polymeric films. MRS Adv 7(29), 635–640 (2022). https://doi.org/10.1557/s43580-022-00340-0
L. Lei et al., Obtaining thickness-limited electrospray deposition for 3D coating. ACS Appl. Mater. Interfaces 10(13), 11175–11188 (2018). https://doi.org/10.1021/acsami.7b19812
B.J. Kingsley, E.E. Pawliczak, T.R. Hurley, P.R. Chiarot, Electrospray printing of polyimide films using passive material focusing. ACS Appl Polym Mater 3(12), 6274–6284 (2021). https://doi.org/10.1021/acsapm.1c01073
S. Erickson, G. McKerricher, S. Hannani, and M. Lemieux, EMI shielding for system in package using nozzle-less ultrasonic spray coating and silver particle free ink. In: 2020 International Wafer Level Packaging Conference, IWLPC 2020, Oct. 2020. https://doi.org/10.23919/IWLPC52010.2020.9375863
I.B. Rietveld, K. Kobayashi, H. Yamada, K. Matsushige, Morphology control of poly(vinylidene fluoride) thin film made with electrospray. J. Colloid Interface Sci. 298(2), 639–651 (2006). https://doi.org/10.1016/J.JCIS.2005.12.028
SIA/SRC Decadal Plan for Semiconductors (SRC 2021) https://www.src.org/about/decadal-plan/ (Accessed May 30, 2023)
Microelectronics and advanced packaging technologies roadmap https://srcmapt.org/ (Accessed May 30, 2023)
Acknowledgments
This work was funded in part by Semiconductor Research Corporation (SRC) and the National Institute of Standards and Technology (NIST). The authors would like to acknowledge their colleagues for useful discussions and feedback on the article: M.C.—Dr. Eric Pop, M.M.—Dr. Srabanti Chowdhury, H.M.—Dr. Gregory Parsons, E.P.—Dr. Paul Chiarot, K.R.—Dr. Frances M. Ross and Dr. Rafael Jaramillo, and W.Y.—Dr. Nitin Samarth and Dr. Yongxi Ou. Also, TY and VZ would like to thank Dilcia Paguada for her help with the article graphics.
Funding
This study was funded by the National Institute of Standards and Technology, Semiconductor Research Corporation.
Author information
Authors and Affiliations
Contributions
HM contributed to Sect. “Expanding the semiconductor patterning toolbox with simultaneous deposition and etching,” HR contributed to Sect. “Two-dimensional materials and devices,” WY contributed to Sect. “Spin dependent phenomena in topological semimetals,” MC contributed to Sect. “Thermal materials,” MM contributed to Sect. “Low-temperature diamond as an effective self-heating spreader,” and EP contributed to Sect. “Packaging materials and processes.” VZ and TY contributed to Sects. “Introduction” and “Summary” as well as provided overall editing of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Victor Zhirnov was an editor of this journal during the review and decision stage. For the MRS Advances policy on review and publication of manuscripts authored by editors, please refer to mrs.org/editor-manuscripts.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhirnov, V., Chen, M.E., Malakoutian, M. et al. SRC-led materials research: 40 years ago, and now. MRS Advances 8, 751–762 (2023). https://doi.org/10.1557/s43580-023-00665-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-023-00665-4