Skip to main content
Log in

Study of the physical properties of NiO nanoparticles synthesized from the flowers, seeds, and leaves extracts of Moringa oleifera

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Three aqueous solutions from the flowers, seeds, and leaves (f-s-l) of Moringa oleifera (M.O) were used as effective chelating and/or reduction/oxidizing agents for the biosynthesis of nickel oxide nanoparticles NiO–NPs (NiO@flowers, NiO@seeds, and NiO@leaves). The structural properties were characterized via X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman spectroscopy. All particles crystallized in a face centered-cubic single Bunsenite phase. NiO@flowers presented the lowest average crystallite size of 18.5 nm compared to 29.0 nm for NiO@seeds and 21.7 nm for NiO@leaves. Their band gap determined using diffuse reflectance UV–Visible and confirmed by photoluminescence analysis was found to be 3.42 eV for all the annealed samples. While morphology analysis from scanning electron microscopy revealed that NiO@flowers nanoparticles displayed a non-uniform morphology with spherically agglomerated nano-crystals, which are flat and more compact. The NiO@seeds nanoparticles exhibited highly coalescent nanograins while the NiO@leaves show irregularly connected microcavities with small nanograins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. E. Aytan, B. Debnath, F. Kargar, Y. Barlas, M.M. Lacerda, J.X. Li, R.K. Lake, J. Shi, A.A. Balandin, Spin-phonon coupling in antiferromagnetic nickel oxide. Appl. Phys. Lett. 111, 1–6 (2017). https://doi.org/10.1063/1.5009598

    Article  CAS  Google Scholar 

  2. E.L. Miller, R.E. Rocheleau, Electrochemical and electrochromic behavior of reactively sputtered nickel oxide. J. Electrochem. Soc. 144, 1995–2003 (1997). https://doi.org/10.1149/1.1837734

    Article  CAS  Google Scholar 

  3. A. Diallo, K. Kaviyarasu, S. Ndiaye, B.M. Mothudi, A. Ishaq, V. Rajendran, M. Maaza, Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chem. Lett. Rev. 11, 166–175 (2018). https://doi.org/10.1080/17518253.2018.1447604

    Article  CAS  Google Scholar 

  4. A.C. Nwanya, M.M. Ndipingwi, C.O. Ikpo, R.M. Obodo, S.C. Nwanya, S. Botha, F.I. Ezema, E.I. Iwuoha, M. Maaza, Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery. J. Alloys Compd. 822, 153581 (2020). https://doi.org/10.1016/j.jallcom.2019.153581

    Article  CAS  Google Scholar 

  5. K.M. Dooley, S.Y. Chen, J.R.H. Ross, Stable nickel-containing catalysts for the oxidative coupling of methane. J. Catal. 145, 402–408 (1994). https://doi.org/10.1006/jcat.1994.1050

    Article  CAS  Google Scholar 

  6. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De Gomes, M. Maaza, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram. Int. 42, 8385–8394 (2016). https://doi.org/10.1016/j.ceramint.2016.02.054

    Article  CAS  Google Scholar 

  7. G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, Y. Hayakawa, Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications. Dalt. Trans. 44, 4485–4497 (2015). https://doi.org/10.1039/c4dt03483j

    Article  CAS  Google Scholar 

  8. S. Noh, E. Lee, J. Seo, M. Mehregany, Electrical properties of nickel oxide thin films for flow sensor application. Sens. Actuators A. 125, 363–366 (2006). https://doi.org/10.1016/j.sna.2005.08.005

    Article  CAS  Google Scholar 

  9. K. Motevalli, Z. Zarghami, M. Panahi-Kalamuei, Simple, novel and low-temperature synthesis of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment. J. Mater. Sci. Mater. Electron. 27, 4794–4799 (2016). https://doi.org/10.1007/s10854-016-4360-5

    Article  CAS  Google Scholar 

  10. S.H. Gebre, M.G. Sendeku, New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0931-4

    Article  Google Scholar 

  11. I. Ngom, B.D. Ngom, J. Sackey, S. Khamlich, Biosynthesis of zinc oxide nanoparticles using extracts of Moringa oleifera: structural & optical properties. Mater. Today Proc. 36, 526–533 (2020). https://doi.org/10.1016/j.matpr.2020.05.323

    Article  CAS  Google Scholar 

  12. H.M. Shinde, T.T. Bhosale, N.L. Gavade, S.B. Babar, R.J. Kamble, B.S. Shirke, K.M. Garadkar, Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity. J. Mater. Sci. Mater. Electron. 29, 14055–14064 (2018). https://doi.org/10.1007/s10854-018-9537-7

    Article  CAS  Google Scholar 

  13. E. Ismail, M. Khenfouch, M. Dhlamini, S. Dube, M. Maaza, Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. J. Alloys Compd. 695, 3632–3638 (2017). https://doi.org/10.1016/j.jallcom.2016.11.390

    Article  CAS  Google Scholar 

  14. H.R. Vasanthi, N. ShriShriMal, D.K. Das, Phytochemicals from plants to combat cardiovascular disease. Curr. Med. Chem. 19, 2242–2251 (2012). https://doi.org/10.2174/092986712800229078

    Article  CAS  Google Scholar 

  15. G.G.F. Nascimento, J. Locatelli, P.C. Freitas, G.L. Silva, Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria, Brazilian. J. Microbiol. 31, 247–256 (2000). https://doi.org/10.1590/S1517-83822000000400003

    Article  Google Scholar 

  16. A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, L.J. Kennedy, Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B Biol. 164, 352–360 (2016). https://doi.org/10.1016/j.jphotobiol.2016.10.003

    Article  CAS  Google Scholar 

  17. A.K.H. Bashir, L.C. Razanamahandry, A.C. Nwanya, K. Kaviyarasu, W. Saban, H.E.A. Mohamed, S.K.O. Ntwampe, F.I. Ezema, M. Maaza, Biosynthesis of NiO nanoparticles for photodegradation of free cyanide solutions under ultraviolet light. J. Phys. Chem. Solids. 134, 133–140 (2019). https://doi.org/10.1016/j.jpcs.2019.05.048

    Article  CAS  Google Scholar 

  18. A. Baykal, N. Kasapoǧlu, Y. Köseoǧlu, M.S. Toprak, H. Bayrakdar, CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J. Alloys Compd. 464, 514–518 (2008). https://doi.org/10.1016/j.jallcom.2007.10.041

    Article  CAS  Google Scholar 

  19. F.T. Thema, E. Manikandan, A. Gurib-fakim, M. Maaza, Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. J. Alloys Compd. 657, 655–661 (2016). https://doi.org/10.1016/j.jallcom.2015.09.227

    Article  CAS  Google Scholar 

  20. A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, D. Hassan, M. Maaza, Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells, Nanomedicine Biotechnol. 46, 838–852 (2018). https://doi.org/10.1080/21691401.2017.1345928

    Article  CAS  Google Scholar 

  21. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, Raman scattering in nanosized nickel oxide NiO. J. Phys. Conf. Ser. 93, 1–6 (2007). https://doi.org/10.1088/1742-6596/93/1/012039

    Article  CAS  Google Scholar 

  22. R.L. Frost, D.L. Wain, W.N. Martens, B. Jagannadha Reddy, The molecular structure of selected minerals of the rosasite group - An XRD, SEM and infrared spectroscopic study. Polyhedron 26, 275–283 (2007). https://doi.org/10.1016/j.poly.2006.05.046

    Article  CAS  Google Scholar 

  23. A.C. Nwanya, M.M. Ndipingwi, N. Mayedwaa, L.C. Razanamahandry, C.O. Ikpo, T. Waryo, S.K.O. Ntwampe, E. Malenga, E. Fosso-Kankeu, F.I. Ezema, E.I. Iwuoha, M. Maaza, Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage. Electrochim. Acta. 301, 436–448 (2019). https://doi.org/10.1016/j.electacta.2019.01.186

    Article  CAS  Google Scholar 

  24. S.J. Musevi, A. Aslani, H. Motahari, H. Salimi, Offer a novel method for size appraise of NiO nanoparticles by PL analysis: synthesis by sonochemical method. J. Saudi Chem. Soc. 20, 245–252 (2016). https://doi.org/10.1016/j.jscs.2012.06.009

    Article  CAS  Google Scholar 

  25. E.F.A. Zeid, I.A. Ibrahem, A.M. Ali, W.A.A. Mohamed, The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Results Phys. 12, 562–570 (2019). https://doi.org/10.1016/j.rinp.2018.12.009

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the German Academic Exchange Service (DAAD), Unesco-Unisa Africa Chair in Nanosciences and Nanotechnology (U2ACN2), University of South Africa (UNISA), University Cheikh Anta Diop of Dakar (UCAD), and iThemba LABs-National Research Foundation of South Africa (ITL-NRF) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ngom.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngom, I., Ndiaye, N.M., Sylla, N.F. et al. Study of the physical properties of NiO nanoparticles synthesized from the flowers, seeds, and leaves extracts of Moringa oleifera. MRS Advances 8, 729–735 (2023). https://doi.org/10.1557/s43580-023-00578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00578-2

Navigation