Skip to main content
Log in

Lattice resonances of lossy transition metal and metalloid antennas

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Localized plasmonic resonances in isolated (single) nanoparticles of lossy materials are weak and do not result in resonances or significant field enhancement. In turn, if nanoparticles are arranged in a periodic lattice, collective resonances emerge from the coupling of the localized resonances of each individual nanoparticle. This coupling results in strong lattice resonances even when the nanoparticles are made of material with high optical losses. Here, we study lattice resonances in the arrays of nanoantennas made of lossy materials, such as transition metals, titanium Ti and tungsten W, and metalloid in the carbon group, germanium Ge. We perform both full-wave electromagnetic simulations and proof-of-concept experimental characterization in the near-infrared range, and we study the lattice resonances in lossy nanoantenna arrays and consider various practical scenarios that commonly arise in laboratory measurements and nanofabrication processes. We excite lattice resonance at different wavelengths by changing the refractive index of substrate and superstrate materials. We show lattice resonances in proximity to Rayleigh anomaly wavelength for homogeneous (substrate and superstrate are the same) and inhomogeneous (substrate and superstrate are different) surrounding environments for disk-shaped titanium nanoantennas on top of a substrate. We analyze the case of oblique light incidence with small angles as it often happens in laboratory measurements with a focused light spot. In this work, we observe lattice resonance in different practical conditions, and we show lattice resonances can be tuned for various applications, including sensing, depending on those conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available from the corresponding author upon reasonable request

References

  1. M. Meier, A. Wokaun, P.F. Liao, Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the rayleigh limit. JOSA B 2(6), 931–949 (1985)

    Article  CAS  Google Scholar 

  2. A.D. Utyushev, V.I. Zakomirnyi, I.L. Rasskazov, Collective lattice resonances: plasmonics and beyond. Rev. Phys. 6, 100051 (2021)

    Article  Google Scholar 

  3. M. Kataja, T. Hakala, A. Julku, M. Huttunen, S. van Dijken, P. Törmä, Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays. Nat. Commun. 6(1), 1–8 (2015)

    Article  Google Scholar 

  4. A.D. Humphrey, W.L. Barnes, Plasmonic surface lattice resonances on arrays of different lattice symmetry. Phys. Rev B 90(7), 075404 (2014)

    Article  CAS  Google Scholar 

  5. R. Guo, T.K. Hakala, P. Törmä, Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays. Phys. Rev B 95(15), 155423 (2017)

    Article  Google Scholar 

  6. S. Rodriguez, M. Schaafsma, A. Berrier, J.G. Rivas, Collective resonances in plasmonic crystals: Size matters. Phys B: Condens. Matter 407(20), 4081–4085 (2012)

    Article  CAS  Google Scholar 

  7. B. Auguié, W.L. Barnes, Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101(14), 143902 (2008)

    Article  Google Scholar 

  8. E.A. van Heijst, S.E. ter Huurne, J.A. Sol, G.W. Castellanos, M. Ramezani, S. Murai, M.G. Debije, J. Gómez Rivas, Electric tuning and switching of the resonant response of nanoparticle arrays with liquid crystals. J. Appl. Phys. 131(8), 083101 (2022)

    Article  Google Scholar 

  9. V.E. Babicheva, Lattice effect in mie-resonant dielectric nanoparticle array under oblique light incidence. MRS Commun. 8(4), 1455–1462 (2018)

    Article  CAS  Google Scholar 

  10. L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, T. Ellenbogen, Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett. 118(24), 243904 (2017)

    Article  Google Scholar 

  11. S.R.K. Rodriguez, M.C. Schaafsma, A. Berrier, J. Gomez Rivas, Collective resonances in plasmonic crystals: Size matters. Physica B: Condensed Matter 407(20), 4081–4085 (2012). https://doi.org/10.1016/j.physb.2012.03.053.Proceedings of the conference - Wave Propagation: From Electrons to Photonic Crystals and Metamaterials

  12. V.I. Zakomirnyi, A.E. Ershov, V.S. Gerasimov, S.V. Karpov, H. Ågren, I.L. Rasskazov, Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size. Opt. Lett. 44(23), 5743–5746 (2019). https://doi.org/10.1364/OL.44.005743

    Article  CAS  Google Scholar 

  13. L. Zundel, J.R. Deop-Ruano, R. Martinez-Herrero, A. Manjavacas, Lattice resonances excited by finite-width light beams. ACS Omega 7(35), 31431–31441 (2022). https://doi.org/10.1021/acsomega.2c03847

    Article  CAS  Google Scholar 

  14. L. Zundel, A. Manjavacas, Finite-size effects on periodic arrays of nanostructures. J. Phys.: Photonics 1(1), 015004 (2018). https://doi.org/10.1088/2515-7647/aae8a2

    Article  Google Scholar 

  15. V. Karimi, V.E. Babicheva, Dipole-lattice nanoparticle resonances in finite arrays. submitted (2023)

  16. A.J. Haider, Z.N. Jameel, I.H. Al-Hussaini, Review on: titanium dioxide applications. Energy Procedia 157, 17–29 (2019)

    Article  CAS  Google Scholar 

  17. I.H. Hadi, M.F. Jawad, K.I. Hassoon, Improvement of substrates properties by incorporating titanium nanoparticles deposited by dc diode sputtering approach. J. Appl. Sci. Nanotechnol. 2(2), 103–111 (2022)

    Article  Google Scholar 

  18. F. Alhashmi Alamer, R.F. Beyari, Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of pedot: Pss-coated cotton fabrics. Nanomaterials 12(9), 1609 (2022)

    Article  CAS  Google Scholar 

  19. V.E. Babicheva, J.V. Moloney, Lattice zenneck modes on subwavelength antennas. Laser Photonics Rev. 13(2), 1800267 (2019)

    Article  Google Scholar 

  20. Y. Kivshar, A. Miroshnichenko, Meta-optics with mie resonances. Opt. Photonics News 28(1), 24–31 (2017)

    Article  Google Scholar 

  21. D. Khlopin, F. Laux, W.P. Wardley, J. Martin, G.A. Wurtz, J. Plain, N. Bonod, A.V. Zayats, W. Dickson, D. Gérard, Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays. JOSA B 34(3), 691–700 (2017)

    Article  CAS  Google Scholar 

  22. S. Zou, G.C. Schatz, Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem. Phys. Lett. 403(1–3), 62–67 (2005)

    Article  CAS  Google Scholar 

  23. P. Offermans, M.C. Schaafsma, S.R. Rodriguez, Y. Zhang, M. Crego-Calama, S.H. Brongersma, J. Gómez Rivas, Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5(6), 5151–5157 (2011)

    Article  CAS  Google Scholar 

  24. W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8(7), 506 (2013)

    Article  CAS  Google Scholar 

  25. Z. Li, S. Butun, K. Aydin, Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8(8), 8242–8248 (2014)

    Article  CAS  Google Scholar 

  26. A. Han, C. Dineen, V.E. Babicheva, J.V. Moloney, Second harmonic generation in metasurfaces with multipole resonant coupling. Nanophotonics 9(11), 3545–3556 (2020). https://doi.org/10.1515/nanoph-2020-0193

    Article  CAS  Google Scholar 

  27. D. Bosomtwi et al., Lattice effect for enhanced hot-electron generation in nanoelectrodes. Opt. Mater. Express 11(9), 3232–3244 (2021). https://doi.org/10.1364/OME.430577

    Article  CAS  Google Scholar 

  28. V. Karimi, V.E. Babicheva, Mxene-antenna electrode with collective multipole resonances. submitted (2023)

  29. V. Karimi, V.E. Babicheva, Mie Calculations of Single Nanosphere Cross-Sections (2021). https://doi.org/10.21981/8QEY-MN47.https://nanohub.org/resources/extcs

  30. S. Zou, N. Janel, G.C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120(23), 10871–10875 (2004)

    Article  CAS  Google Scholar 

  31. V.E. Babicheva, A.B. Evlyukhin, Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays. Phys. Rev. B 99(19), 195444 (2019)

    Article  CAS  Google Scholar 

  32. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Optical response features of si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010). https://doi.org/10.1103/PhysRevB.82.045404

    Article  CAS  Google Scholar 

  33. A.B. Evlyukhin, C. Reinhardt, U. Zywietz, B.N. Chichkov, Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B 85(24), 245411 (2012)

    Article  Google Scholar 

  34. V.E. Babicheva, A.B. Evlyukhin, Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices. MRS Commun. 8(3), 712–717 (2018). https://doi.org/10.1557/mrc.2018.112

    Article  CAS  Google Scholar 

  35. P.D. Terekhov, V.E. Babicheva, K.V. Baryshnikova, A.S. Shalin, A. Karabchevsky, A.B. Evlyukhin, Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B 99, 045424 (2019). https://doi.org/10.1103/PhysRevB.99.045424

    Article  CAS  Google Scholar 

  36. A. Han, J.V. Moloney, V.E. Babicheva, Applicability of multipole decomposition to plasmonic- and dielectric-lattice resonances. J. Chem. Phys. 156(11), 114104 (2022). https://doi.org/10.1063/5.0082005

    Article  CAS  Google Scholar 

  37. V.G. Kravets, A.V. Kabashin, W.L. Barnes, A.N. Grigorenko, Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. 118(12), 5912–5951 (2018)

    Article  CAS  Google Scholar 

  38. I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7(9), 7824–7832 (2013)

    Article  CAS  Google Scholar 

  39. A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12(7), 3749–3755 (2012)

    Article  CAS  Google Scholar 

  40. M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)

    Article  CAS  Google Scholar 

  41. G.W. Castellanos, P. Bai, J. Gómez Rivas, Lattice resonances in dielectric metasurfaces. J. Appl. Phys. 125(21), 213105 (2019)

    Article  Google Scholar 

  42. V. Karimi, V.E. Babicheva, Semiconductor nanopillars for programmable directional lasing emissions. MRS Adv. 6(8), 234–240 (2021). https://doi.org/10.1557/s43580-021-00042-z

    Article  CAS  Google Scholar 

  43. Karimi, V., Babicheva, V.E.: Nanopillar resonant properties and coupling to thin high-index layer for control of coherent light states. In: Engheta, N., Noginov, M.A., Zheludev, N.I. (eds.) Metamaterials, Metadevices, and Metasystems 2020, vol. 11460, p. 114601. SPIE, ??? (2020). doi:10.1117/12.2569086. International Society for Optics and Photonics

  44. P.B. Johnson, R.W. Christy, Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd. Phys. Rev. B 9, 5056–5070 (1974). https://doi.org/10.1103/PhysRevB.9.5056

    Article  CAS  Google Scholar 

  45. W.S.M. Werner, K. Glantschnig, C. Ambrosch-Draxl, Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009). https://doi.org/10.1063/1.3243762

    Article  CAS  Google Scholar 

  46. T.N. Nunley, N.S. Fernando, N. Samarasingha, J.M. Moya, C.M. Nelson, A.A. Medina, S. Zollner, Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6ev via a multisample ellipsometry investigation. J. Vac. Sci. Technol. B 34(6), 061205 (2016). https://doi.org/10.1116/1.4963075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

V.E.B. acknowledges the support from the University of New Mexico Research Allocations Committee (Award No. RAC 2023) for the computational resources and WeR1: Investing in Faculty Success Program SURF. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract 89233218CNA000001) and Sandia National Laboratories (Contract DE-NA-0003525). The work is also supported by Contract DE-2375849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoriia E. Babicheva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Viktoriia E. Babicheva was an editor of this journal during the review and decision stage. For the MRS Advances policy on review and publication of manuscripts authored by editors, please refer to http://mrs.org/editor-manuscripts.

Appendix

Appendix

Method

Numerical simulations

Full-wave simulations are performed with a frequency-domain solver in the commercial package CST Studio Suite. Electric and magnetic fields of the incident wave are along the x- and y-axes, respectively. Substantial distance \(\sim 5 \lambda\) between the nanoantenna and domain edges is included to account for the decay of near fields around the nanoantenna. The required distance between a nanoparticle array and a detector must be significantly greater when considering diffractive effects compared to a single nanoparticle. The Floquet-Bloch boundary conditions are used in the x- and y-directions, and open boundaries are applied in the z-direction. Open boundaries account for the first 25 modes to ensure complete attenuation of any incoming waves originating from the nanoantenna scattering into different diffraction orders. Titanium, tungsten, and germanium permittivities are taken from Refs. [44,45,46], respectively.

Nanofabrication

Fused silica sample was spin-coated with PMMA 950-A9 (5000 rpm) and baked at 180 °C for 3 min and process was performed twice resulting in \(\sim\)2.5-\(\mu\)m-thick PMMA. E-beam exposure was done with JEOL JBX6300-FS, 60 \(\mu\)m aperture, 100 keV energy, and 1 nA current, and the sample was developed in MIBK-IPA 1:3 solution for 90 sec. Titanium was deposited with an e-beam evaporator with a 0.5 Å/s rate to a total thickness of 500 nm. The sample was immersed in Remover PG and heated to 78 °C for 2 h and 30 min. Afterward, the e-beam resist was lifted off by thoroughly rinsing it with acetone.

Measurements

Reflection was measured using a custom setup connected to Ocean Optics NIRQuest+2.2 spectrometer operating in the range 0.9 - 2.15 \(\mu\)m with a resolution of \(\sim\)5.5 nm. Reflection from the array was normalized to the reflection from the mirror with the same thickness being positioned on the same stage at the sample at the moment of measurement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Babicheva, V.E. Lattice resonances of lossy transition metal and metalloid antennas. MRS Advances 8, 138–147 (2023). https://doi.org/10.1557/s43580-023-00558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00558-6

Navigation