Skip to main content
Log in

Fully atomistic molecular dynamics investigation of the simplest model of dry-draw fabrication of carbon nanotube fibers

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Macroscopic assemblies of carbon nanotubes (CNTs) are desirable materials because of the excellent CNT properties. Among the methods of production of these CNT materials, the dry-draw fabrication where CNT fibers (CNTFs) are directly pulled out from a CNT forest is known to provide good physical properties. Although it is known that vertical alignment of CNT bundles within the CNT forest is important, the mechanisms behind the dry-draw fabrication of CNTFs are still not completely understood. The simplest known dry-draw model consists of CNT bundles laterally interacting by only van der Waals forces (vdWf). Here, by fully atomistic classical molecular dynamics simulations, we show that the simplest dry-draw model does not produce CNTFs. We also show one important condition for a pair of adjacent CNT bundles to connect themselves under vdWf only and discuss why it leads to the failure of the simplest model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  2. F. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng, Y. Li, Chem. Rev. 120, 2693 (2020). https://doi.org/10.1021/acs.chemrev.9b00835

    Article  CAS  Google Scholar 

  3. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Nat. Nanotechnol. 3, 626 (2008). https://doi.org/10.1038/nnano.2008.211

    Article  CAS  Google Scholar 

  4. B.Q. Wei, R. Vajtai, P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001). https://doi.org/10.1063/1.1396632

    Article  CAS  Google Scholar 

  5. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 6, 96 (2006). https://doi.org/10.1021/nl052145f

    Article  CAS  Google Scholar 

  6. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013). https://doi.org/10.1126/science.1222453

    Article  CAS  Google Scholar 

  7. K. Jensen, J. Weldon, H. Garcia, A. Zettl, Nano Lett. 7, 3508 (2007). https://doi.org/10.1021/nl0721113

    Article  CAS  Google Scholar 

  8. M.M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S.P. Wong, S. Mitra, Nature 501, 526 (2013). https://doi.org/10.1038/nature12502

    Article  CAS  Google Scholar 

  9. X. Ge, M. Fu, X. Niu, X. Kong, Ceram. Int. 46, 26557 (2020). https://doi.org/10.1016/j.ceramint.2020.07.123

    Article  CAS  Google Scholar 

  10. R. Chadar, O. Afzal, S.M. Alqahtani, P. Kesharwani, Colloids Surf. B: Biointerfaces 208, 112044 (2021). https://doi.org/10.1016/j.colsurfb.2021.112044

    Article  CAS  Google Scholar 

  11. T.E. Cantuario, A.F. Fonseca, Ann. Phys. 531, 1800502 (2019). https://doi.org/10.1002/andp.201800502

    Article  CAS  Google Scholar 

  12. T.N.Y. Silva, A.F. Fonseca, Phys. Rev. B 106, 165413 (2022). https://doi.org/10.1103/PhysRevB.106.165413

    Article  CAS  Google Scholar 

  13. A.D. Avery, B.H. Zhou, J. Lee, E.-S. Lee, E.M. Miller, R. Ihly, D. Wesenberg, K.S. Mistry, S.L. Guillot, B.L. Zink, Y.-H. Kim, J.L. Blackburn, A.J. Ferguson, Nat. Energy 1, 16033 (2016). https://doi.org/10.1038/nenergy.2016.33

    Article  CAS  Google Scholar 

  14. J.L. Blackburn, ACS Energy Lett. 2, 1598 (2017). https://doi.org/10.1021/acsenergylett.7b00228

    Article  CAS  Google Scholar 

  15. I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Science 362, 547 (2018). https://doi.org/10.1126/science.aat7439

    Article  CAS  Google Scholar 

  16. R.J. Headrick, D.E. Tsentalovich, J. Berdegué, E.A. Bengio, L. Liberman, O. Kleinerman, M.S. Lucas, Y. Talmon, M. Pasquali, Adv. Mater. 30, 1704482 (2018). https://doi.org/10.1002/adma.201704482

    Article  CAS  Google Scholar 

  17. P. Dariyal, A.K. Arya, B.P. Singh, S.R. Dhakate, J. Mater. Sci. 56, 1087 (2021). https://doi.org/10.1007/s10853-020-05304-z

    Article  CAS  Google Scholar 

  18. B. Natarajan, Compos. Sci. Technol. 225, 109501 (2022). https://doi.org/10.1016/j.compscitech.2022.109501

    Article  CAS  Google Scholar 

  19. F. Wang, S. Zhao, Q. Jiang, R. Li, Y. Zhao, Y. Huang, X. Wu, B. Wang, R. Zhang, Cell Rep. Phys. Sci. 3, 100989 (2022). https://doi.org/10.1016/j.xcrp.2022.100989

    Article  CAS  Google Scholar 

  20. K. Jiang, Q. Li, S. Fan, Nature 419, 801 (2002). https://doi.org/10.1038/419801a

    Article  CAS  Google Scholar 

  21. M. Zhang, K.R. Atkinson, R.H. Baughman, Science 306, 1358 (2004). https://doi.org/10.1126/science.1104276

    Article  CAS  Google Scholar 

  22. X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, T. Zhang, Q. Li, S. Fan, Adv. Mater. 18, 1505 (2006). https://doi.org/10.1002/adma.200502528

    Article  CAS  Google Scholar 

  23. Y. Nakayama, Jpn. J. Appl. Phys. 47, 8149 (2008). https://doi.org/10.1143/JJAP.47.8149

    Article  CAS  Google Scholar 

  24. A.A. Kuznetsov, A.F. Fonseca, R.H. Baughman, A.A. Zakhidov, ACS Nano 5, 985 (2011). https://doi.org/10.1021/nn102405u

    Article  CAS  Google Scholar 

  25. C. Zhu, C. Cheng, Y.H. He, L. Wang, T.L. Wong, K.K. Fung, N. Wang, Carbon 49, 4996 (2011). https://doi.org/10.1016/j.carbon.2011.07.014

    Article  CAS  Google Scholar 

  26. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002). https://doi.org/10.1088/0953-8984/14/4/312

    Article  CAS  Google Scholar 

  27. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. In’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  CAS  Google Scholar 

  28. L.D. Machado, S.B. Legoas, D.S. Galvão, MRS Online Proc. Libr. 1407, 710 (2012). https://doi.org/10.1557/opl.2012.710

    Article  CAS  Google Scholar 

  29. R.R. Del Grande, A.F. Fonseca, R.B. Capaz, Carbon 159, 161 (2020). https://doi.org/10.1016/j.carbon.2019.12.030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AFF is a fellow of the Brazilian Agency CNPq-Brazil (303284/2021-8) and acknowledges grants #2020/02044-9 from São Paulo Research Foundation (FAPESP) and #2543/22 from FAEPEX/UNICAMP. This work used resources of the “Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP)”, project number #proj861, and of the John David Rogers Computing Center (CCJDR) in the Gleb Wataghin Institute of Physics, University of Campinas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre F. Fonseca.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomazini, L.F.V., Fonseca, A.F. Fully atomistic molecular dynamics investigation of the simplest model of dry-draw fabrication of carbon nanotube fibers. MRS Advances 8, 349–354 (2023). https://doi.org/10.1557/s43580-023-00552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00552-y

Navigation