Abstract
Macroscopic assemblies of carbon nanotubes (CNTs) are desirable materials because of the excellent CNT properties. Among the methods of production of these CNT materials, the dry-draw fabrication where CNT fibers (CNTFs) are directly pulled out from a CNT forest is known to provide good physical properties. Although it is known that vertical alignment of CNT bundles within the CNT forest is important, the mechanisms behind the dry-draw fabrication of CNTFs are still not completely understood. The simplest known dry-draw model consists of CNT bundles laterally interacting by only van der Waals forces (vdWf). Here, by fully atomistic classical molecular dynamics simulations, we show that the simplest dry-draw model does not produce CNTFs. We also show one important condition for a pair of adjacent CNT bundles to connect themselves under vdWf only and discuss why it leads to the failure of the simplest model.
Graphical Abstract
Similar content being viewed by others
Data availability
Data available on request from the authors.
References
S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
F. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng, Y. Li, Chem. Rev. 120, 2693 (2020). https://doi.org/10.1021/acs.chemrev.9b00835
B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Nat. Nanotechnol. 3, 626 (2008). https://doi.org/10.1038/nnano.2008.211
B.Q. Wei, R. Vajtai, P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001). https://doi.org/10.1063/1.1396632
E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 6, 96 (2006). https://doi.org/10.1021/nl052145f
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013). https://doi.org/10.1126/science.1222453
K. Jensen, J. Weldon, H. Garcia, A. Zettl, Nano Lett. 7, 3508 (2007). https://doi.org/10.1021/nl0721113
M.M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S.P. Wong, S. Mitra, Nature 501, 526 (2013). https://doi.org/10.1038/nature12502
X. Ge, M. Fu, X. Niu, X. Kong, Ceram. Int. 46, 26557 (2020). https://doi.org/10.1016/j.ceramint.2020.07.123
R. Chadar, O. Afzal, S.M. Alqahtani, P. Kesharwani, Colloids Surf. B: Biointerfaces 208, 112044 (2021). https://doi.org/10.1016/j.colsurfb.2021.112044
T.E. Cantuario, A.F. Fonseca, Ann. Phys. 531, 1800502 (2019). https://doi.org/10.1002/andp.201800502
T.N.Y. Silva, A.F. Fonseca, Phys. Rev. B 106, 165413 (2022). https://doi.org/10.1103/PhysRevB.106.165413
A.D. Avery, B.H. Zhou, J. Lee, E.-S. Lee, E.M. Miller, R. Ihly, D. Wesenberg, K.S. Mistry, S.L. Guillot, B.L. Zink, Y.-H. Kim, J.L. Blackburn, A.J. Ferguson, Nat. Energy 1, 16033 (2016). https://doi.org/10.1038/nenergy.2016.33
J.L. Blackburn, ACS Energy Lett. 2, 1598 (2017). https://doi.org/10.1021/acsenergylett.7b00228
I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Science 362, 547 (2018). https://doi.org/10.1126/science.aat7439
R.J. Headrick, D.E. Tsentalovich, J. Berdegué, E.A. Bengio, L. Liberman, O. Kleinerman, M.S. Lucas, Y. Talmon, M. Pasquali, Adv. Mater. 30, 1704482 (2018). https://doi.org/10.1002/adma.201704482
P. Dariyal, A.K. Arya, B.P. Singh, S.R. Dhakate, J. Mater. Sci. 56, 1087 (2021). https://doi.org/10.1007/s10853-020-05304-z
B. Natarajan, Compos. Sci. Technol. 225, 109501 (2022). https://doi.org/10.1016/j.compscitech.2022.109501
F. Wang, S. Zhao, Q. Jiang, R. Li, Y. Zhao, Y. Huang, X. Wu, B. Wang, R. Zhang, Cell Rep. Phys. Sci. 3, 100989 (2022). https://doi.org/10.1016/j.xcrp.2022.100989
K. Jiang, Q. Li, S. Fan, Nature 419, 801 (2002). https://doi.org/10.1038/419801a
M. Zhang, K.R. Atkinson, R.H. Baughman, Science 306, 1358 (2004). https://doi.org/10.1126/science.1104276
X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, T. Zhang, Q. Li, S. Fan, Adv. Mater. 18, 1505 (2006). https://doi.org/10.1002/adma.200502528
Y. Nakayama, Jpn. J. Appl. Phys. 47, 8149 (2008). https://doi.org/10.1143/JJAP.47.8149
A.A. Kuznetsov, A.F. Fonseca, R.H. Baughman, A.A. Zakhidov, ACS Nano 5, 985 (2011). https://doi.org/10.1021/nn102405u
C. Zhu, C. Cheng, Y.H. He, L. Wang, T.L. Wong, K.K. Fung, N. Wang, Carbon 49, 4996 (2011). https://doi.org/10.1016/j.carbon.2011.07.014
D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002). https://doi.org/10.1088/0953-8984/14/4/312
A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. In’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171
L.D. Machado, S.B. Legoas, D.S. Galvão, MRS Online Proc. Libr. 1407, 710 (2012). https://doi.org/10.1557/opl.2012.710
R.R. Del Grande, A.F. Fonseca, R.B. Capaz, Carbon 159, 161 (2020). https://doi.org/10.1016/j.carbon.2019.12.030
Acknowledgments
AFF is a fellow of the Brazilian Agency CNPq-Brazil (303284/2021-8) and acknowledges grants #2020/02044-9 from São Paulo Research Foundation (FAPESP) and #2543/22 from FAEPEX/UNICAMP. This work used resources of the “Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP)”, project number #proj861, and of the John David Rogers Computing Center (CCJDR) in the Gleb Wataghin Institute of Physics, University of Campinas.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Thomazini, L.F.V., Fonseca, A.F. Fully atomistic molecular dynamics investigation of the simplest model of dry-draw fabrication of carbon nanotube fibers. MRS Advances 8, 349–354 (2023). https://doi.org/10.1557/s43580-023-00552-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-023-00552-y