Skip to main content

Advertisement

Log in

Optimized 2D nanostructures for catalysis of hydrogen evolution reactions

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Electrochemical water splitting can produce hydrogen without harmful emissions. However, the need for more cheap and efficient catalysts presents a significant bottleneck for this technology. With a diverse chemical composition and electronic properties, transition metal dichalcogenides have been extensively investigated for catalysing hydrogen evolution reactions. Major approaches to enhance these materials’ activity are based on increasing active site counting and enhancing their intrinsic activity, which can be achieved by doping. In this work, we performed ab initio calculations to investigate the catalytic activity of pristine and Pt-doped 1 T-TiSe2. Our results show that basal plane transition metal sites are meta-stable for adsorption, while chalcogen sites are most favourable. Furthermore, catalytic activity was enhanced after the Pt introduction, as indicated by the change in the ∆G towards zero. Nonetheless, Pt sites exhibited the best activity among the investigated sites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Safari, I. Dincer, Energy Convers. Manage. (2020). https://doi.org/10.1016/j.enconman.2019.112182

    Article  Google Scholar 

  2. A.M. Oliveira, R.R. Beswick, Y. Yan, Curr. Opin. Chem. Eng. (2021). https://doi.org/10.1016/j.coche.2021.100701

    Article  Google Scholar 

  3. IEA, The Future of Hydrogen, IEA, Paris (2019) https://www.iea.org/reports/the-future-of-hydrogen

  4. P.J. Megía, A.J. Vizcaíno, J.A. Calles, A. Carrero, Energy Fuels (2021). https://doi.org/10.1021/acs.energyfuels.1c02501

    Article  Google Scholar 

  5. S. Wang, A. Lu, C.J. Zhong, Nano Convergence (2021). https://doi.org/10.1186/s40580-021-00254-x

    Article  Google Scholar 

  6. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Chem. Rev. (2020). https://doi.org/10.1021/acs.chemrev.9b00248

    Article  Google Scholar 

  7. C. Li, J.B. Baek, ACS Omega (2020). https://doi.org/10.1021/acsomega.9b03550

    Article  Google Scholar 

  8. H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Nanoscale (2020). https://doi.org/10.1039/C9NR08313H

    Article  Google Scholar 

  9. J. Zhu, R. Yang, G. Zhang, Chem. Phys. Mater. (2022). https://doi.org/10.1016/j.chphma.2021.11.005

    Article  Google Scholar 

  10. C. Tsai, K. Chan, J.K. Nørskov, F. Abild-Pedersen, Surf. Sci. (2020). https://doi.org/10.1016/j.susc.2015.01.019

    Article  Google Scholar 

  11. Q. Tang, D. Jiang, ACS Catal. (2016). https://doi.org/10.1021/acscatal.6b01211

    Article  Google Scholar 

  12. J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energy Environ. Sci. (2015). https://doi.org/10.1039/C5EE00751H

    Article  Google Scholar 

  13. F.J. Di Salvo, D.E. Moncton, J.V. Waszczak, Phys. Rev. B (1976). https://doi.org/10.1103/PhysRevB.14.4321

    Article  Google Scholar 

  14. A.F. Kusmartseva, B. Sipos, H. Berger, L. Forró, E. Tutis, Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.103.236401

    Article  Google Scholar 

  15. D. Zhang, G. Zhao, P. Li, Y. Zhang, W. Qiu, J. Shu, Y. Jiang, S.X. Dou, W. Sun, Chem. A Eur. J. (2018). https://doi.org/10.1002/chem.201704661

    Article  Google Scholar 

  16. T.R. Juran, M. Smeu, J. Power Sources (2019). https://doi.org/10.1016/j.jpowsour.2019.226813

    Article  Google Scholar 

  17. M. Hellgren, L. Baguet, M. Calandra, F. Mauri, L. Wirtz, Phys. Rev. B (2021). https://doi.org/10.1103/PhysRevB.103.075101

    Article  Google Scholar 

  18. P. Giannozzi et al., J. Phys.: Condens. Matter (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  19. P. Giannozzi et al., J. Phys. Condensed Matter (2017). https://doi.org/10.1088/1361-648X/aa8f79

    Article  Google Scholar 

  20. G. Prandini et al., npj Comput. Mater. (2018). https://doi.org/10.1038/s41524-018-0127-2

    Article  Google Scholar 

  21. K. Lejaeghere et al., Science (2016). https://doi.org/10.1126/science.aad3000

    Article  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  23. H.J. Monkhorst, J.D. Pack, J.D. Phys, Rev. B (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  24. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B (2004). https://doi.org/10.1021/jp047349j

    Article  Google Scholar 

  25. A. Lasia, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.05.183

    Article  Google Scholar 

  26. J. Ekspong, E. Gracia-Espino, T. Wagberg, J. Phys. Chem. C (2020). https://doi.org/10.1021/acs.jpcc.0c05243

    Article  Google Scholar 

  27. J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 10(1149/1), 1856988 (2005)

    Google Scholar 

  28. J.S. Chen, J.K. Wang, S.V. Carr, S.C. Vogel, O. Gourdon, P. Dai, E. Morosan, Phys. Rev. B (2015). https://doi.org/10.1103/PhysRevB.91.045125

    Article  Google Scholar 

Download references

Acknowledgments

The authors thanks CCM-UFABC for the computational resources provided and PRH.49 UFABC for the financial support and CNPq (#310045/2019-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Alves da Silva Autreto.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C.C., Autreto, P.A. Optimized 2D nanostructures for catalysis of hydrogen evolution reactions. MRS Advances 8, 307–310 (2023). https://doi.org/10.1557/s43580-023-00549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00549-7

Navigation