Skip to main content
Log in

Antenna-coupled graphene josephson-junction terahertz detector

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Highly sensitive, broadly tunable detectors are needed for future sensing applications and quantum information systems. A promising material for these challenges comprises stacked graphene sheets having a “magic” twist angle between their in-plane symmetry axes. This material displays superconductivity with a ~ 2 K transition temperature. We investigate a proposed design for a fast and sensitive detector of THz and mm-waves based on antenna-coupled magic-angle-twist-graphene Josephson junctions. The considered non-bolometric detection mechanism depends on the decrease in the maximum zero-voltage DC current when AC current is driven through the junction. Finite element electrodynamic simulations favor the bowtie over log-periodic, square spiral, and Archimedean spiral antenna designs. Responsivity, noise-equivalent-power, and the prospects for single-photon detection are estimated.

Graphical abstract

Graphene sheets stacked with “magic” twist angle display superconductivity. Josephson junctions can be created by selective gating. We investigate a non-bolometric detection mechanism that promises simultaneous high speed and sensitivity, with potential application to quantum cryptography in the 5G band. A noise-equivalent-photon flux of 1 photon every 6 ns is the projected sensitivity for THz and mm-waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Truventic holds data rights under its STTR contract, but data are available from the authors upon reasonable request.

References

  1. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instr. 82, 071101 (2011). https://doi.org/10.1063/1.3610677

    Article  CAS  Google Scholar 

  2. V.F. Guedes, F.A. Mendonca, J.B.R. Silva, R.V. Ramos, Discrete variable quantum key distribution in millimeter-wave and THz regions. TechRxiv (2021). https://doi.org/10.36227/techrxiv.15091338.v1

    Article  Google Scholar 

  3. P.L. Richards, The Josephson junction as a detector of microwave and far-infrared radiation, Chapter 6, in Semiconductors and Semimetals, vol. 12, ed. by R.K. Willardson, A.C. Beer (Elsevier, Amsterdam, 1977), pp. 395–440

  4. Office of the Secretary of Defense (OSD), Small Business Technology Transfer (STTR) Program, Topic Number OSD21C-005 “Twisted graphene-based Josephson junction detectors,” (2021).

  5. G. Di Battista, P. Seifert, K. Watanabe, T. Taniguchi, K.C. Fong, A. Principi, D.K. Efetov, Revealing the thermal properties of superconducting magic-angle twisted bilayer graphene. Nano Lett. 22, 6465–6470 (2022). https://doi.org/10.1021/acs.nanolett.1c04512

    Article  CAS  Google Scholar 

  6. G.H. Lee, D.K. Efetov, W. Jung, L. Ranzani, E.D. Walsh, T.A. Ohki, T. Taniguchi, K. Watanabe, P. Kim, D. Englun, K.C. Fong, Graphene-based Josephson junction microwave bolometer. Nature 586, 42 (2020). https://doi.org/10.1038/s41586-020-2752-4

    Article  CAS  Google Scholar 

  7. R. Kokkoniemi, J.-P. Girard, D. Hazra, A. Laitinen, J. Govenius, R.E. Lake, I. Sallinen, V. Vesterinen, M. Partanen, J.Y. Tan, K.W. Chan, K.Y. Tan, P. Hakonen, M. Möttönen, Bolometer operating at the threshold for circuit quantum electrodynamics. Nature 586, 47 (2020). https://doi.org/10.1038/s41586-020-2753-3

    Article  CAS  Google Scholar 

  8. E.D. Walsh, W. Jung, G.-H. Lee, D.K. Efetov, B.-I. Wu, K.-F. Huang, T.A. Ohki, T. Taniguchi, K. Watanabe, P. Kim, D. Englund, K.C. Fong, Josephson junction infrared single-photon detector. Science 372, 409 (2021). https://doi.org/10.1126/science.abf5539

    Article  CAS  Google Scholar 

  9. E.D. Walsh, D.K. Efetov, G.-H. Lee, M. Heuck, J. Crossno, T.A. Ohki, P. Kim, D. Englund, K.C. Fong, Graphene-based josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017). https://doi.org/10.1103/PhysRevApplied.8.024022

    Article  Google Scholar 

  10. X. Du, D.E. Prober, H. Vora, C.B. Mckitterick, Graphene-based bolometers graphene. 2D Mater. 1, 1 (2014). https://doi.org/10.2478/gpe-2014-0001

    Article  Google Scholar 

  11. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing. Theor. Comp. Sci. 560, 7 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  Google Scholar 

  12. J.M. Park, Y. Cao, L.Q. Xia, L.-Q. Xia, S. Sun, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877 (2022). https://doi.org/10.1038/s41563-022-01287-1

    Article  CAS  Google Scholar 

  13. F.J. González, G.D. Boreman, Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. & Technol. 46, 418 (2005). https://doi.org/10.1016/j.infrared.2004.09.002

    Article  Google Scholar 

  14. C.A. Balanis, Antenna theory: analysis and design, 3rd edn. (Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  15. A.C. Gadelha, D.A.A. Ohlberg, F.C. Santana, G.S.N. Eliel, J.S. Lemos, V. Ornelas, D. Miranda, R.B. Nadas, K. Watanabe, T. Taniguchi, C. Rabelo, P. Paulo de Mello Venezuela, G. Medeiros-Ribeiro, A. Jorio, L.G. Cançado, L.C. Campos, Twisted bilayer graphene: a versatile fabrication method and the detection of variable nanometric strain caused by twist-angle disorder. ACS Appl. Nano Mater. 4, 1858 (2021). https://doi.org/10.1021/acsanm.0c03230

    Article  CAS  Google Scholar 

  16. H. Hashiba, V. Antonov, L. Kulik, A. Tzalenchuk, S. Komiyama, Sensing individual terahertz photons. Nanotechnology 23, 165203 (2010). https://doi.org/10.1088/0957-4484/21/16/165203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Army OSD STTR contract #W911NF22P0026.

Funding

U.S. Army, W911NF22P0026, F. Javier Gonzalez

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Peale.

Ethics declarations

Conflict of interest

R. E. Peale and C. J. Fredricksen have ownership in Truventic and may benefit financially from the results of this research. Otherwise, all authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, F.J., Lodge, M.S., Ishigami, M. et al. Antenna-coupled graphene josephson-junction terahertz detector. MRS Advances 8, 148–151 (2023). https://doi.org/10.1557/s43580-023-00546-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00546-w

Navigation