Skip to main content
Log in

A snapshot review of double magnetic junctions for STT-MRAM

  • Review
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The development of double magnetic junctions for spin-transfer torque magnetoresistive random access memory (STT-MRAM) is reviewed, with an emphasis on work from IBM. A brief overview of the theory of spin-transfer torque in double magnetic tunnel junctions is given, showing that for high spin-polarization, up to a factor of 10 improvement in switching efficiency is theoretically possible. Experimental results on double magnetic tunnel junctions, using two tunnel barriers, show a factor of two improvement in switching efficiency. Experimental results on double spin-torque magnetic tunnel junctions, using one tunnel barrier and one low resistance spacer, show close to a factor of two improvement in switching efficiency, and enable reliable switching down to 250 ps.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© 2017 IEEE. Review of results for the single magnetic tunnel junction, for four different values of the spin polarization, P. (a) Normalized spin torque for constant voltage applied across the junction. Note the spin torque is symmetric about θ = π/2, causing the switching voltage for both switching polarities to be equal. R is the resistance when θ = π/2. (b) Normalized resistance. The magnetoresistance (MR) makes the antiparallel resistance larger than the parallel resistance. MR values are listed corresponding to each of the four values of P used. (c) Combining (a) and (b) with Ohm’s law gives the normalized spin torque for constant current applied through the junction. Because, at constant current, the spin torque is larger near θ = π than near θ = 0, the switching current is lower for antiparallel to parallel switching than for parallel to antiparallel switching

Fig. 3

© 2015 IEEE. TEM of a 31 nm double magnetic tunnel junction. The two white lines are the two tunnel barriers

Fig. 4
Fig. 5

© 2015 IEEE. Spin-torque switching efficiency of double magnetic tunnel junction (DMTJ) arrays versus reference single magnetic tunnel junction (SMTJ) arrays as a function of MTJ size

Fig. 6

© 2017 IEEE. Dependence of spin-torque switching efficiency on resistance-area product (RA), for two different materials designs of single magnetic tunnel junctions. Each data point is the median of ~ 100 devices (35 nm diameter)

Fig. 7

© 2021 IEEE. Write-error-rate curve comparison for a 42 nm diameter double spin-torque magnetic tunnel junction (black) versus a reference single magnetic tunnel junction (red), for 10 ns write pulses

Fig. 8

© 2022 IEEE. Write-error-rate (WER) curves of 194 double spin-torque magnetic tunnel junctions (55 nm diameter) using 500 ps write pulses, down to 10−6 write-error-rate

Fig. 9

© 2022 IEEE. Write-error-rate (WER) curves of 194 double spin-torque magnetic tunnel junctions (55 nm diameter) using 250 ps write pulses, down to 10−6 write-error-rate

Similar content being viewed by others

References

  1. J.C. Slonczewski, Phys. Rev. B 39, 6995 (1989)

    Article  CAS  Google Scholar 

  2. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  CAS  Google Scholar 

  3. A.D. Kent, D.C. Worledge, Nature Nano. 10, 187 (2015)

    Article  CAS  Google Scholar 

  4. S. Yuasa, K. Hono, G. Hu, D. Worledge, MRS Bull. 43, 352 (2018)

    Article  CAS  Google Scholar 

  5. Y. Huai, F. Albert, P. Nguyen, M. Pakala, T. Valet, Appl. Phys. Lett. 84, 3118 (2004)

    Article  CAS  Google Scholar 

  6. G.D. Fuchs, N.C. Emley, I.N. Krovorotov, P.M. Braganca, E.M. Ryan, S.I. Kiselev, J.C. Sankey, D.C. Ralph, R.A. Buhman, Appl. Phys. Lett. 85, 1205 (2004)

    Article  CAS  Google Scholar 

  7. L. Berger, J. Appl. Phys. 93, 7693 (2003)

    Article  CAS  Google Scholar 

  8. G.D. Fuchs, I.N. Krivorotov, P.M. Braganca, N.C. Emley, A.G.F. Garcia, D.C. Ralph, R.A. Buhrman, Appl. Phys. Lett. 86, 152509 (2005)

    Article  Google Scholar 

  9. M. Pakala, Y. Huai, T. Valet, Y. Ding, Z. Diao, J. Appl. Phys. 98, 056107 (2005)

    Article  Google Scholar 

  10. Y. Huai, M. Pakala, Z. Diao, Y. Ding, Appl. Phys. Lett. 87, 222510 (2005)

    Article  Google Scholar 

  11. Z. Diao, A. Panchula, Y. Ding, M. Pakala, S. Wang, Z. Li, D. Apalkov, H. Nagai, A. Driskill-Smith, L.-C. Wang, E. Chen, Y. Huai, Appl. Phys. Lett. 90, 132508 (2007)

    Article  Google Scholar 

  12. P.-Y. Clement, C. Baraduc, C. Ducruet, L. Vila, M. Chshiev, B. Dieny, Appl. Phys. Lett. 107, 102405 (2015)

    Article  Google Scholar 

  13. H. Meng, J. Wang, J.-P. Wang, Appl. Phys. Lett. 88, 082504 (2006)

    Article  Google Scholar 

  14. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater. 9, 721 (2010)

    Article  CAS  Google Scholar 

  15. D.C. Worledge, G. Hu, P.L. Trouilloud, D.W. Abraham, S. Brown, M.C. Gaidis, J. Nowak, E.J. O’Sullivan, R.P. Robertazzi, J.Z. Sun, W.J. Gallagher, Switching distributions and write reliability of perpendicular spin torque MRAM (2010 IEEE International Electron Devices Meeting, San Francisco, 2010)

    Book  Google Scholar 

  16. G. Hu, J.H. Lee, J.J. Nowak, J.Z. Sun, J. Harms, A. Annunziata, S. Brown, W. Chen, Y.H. Kim, G. Lauer, L. Liu, N. Marchack, S. Murthy, E.J. O’Sullivan, J.H. Park, M. Reuter, R.P. Robertazzi, P.L. Trouilloud, Y. Zhu, D.C. Worledge, STT-MRAM with double magnetic tunnel junctions (2015 IEEE International Electron Devices Meeting, Washington, 2015)

    Book  Google Scholar 

  17. G. Hu, G. Lauer, J.Z. Sun, P. Hashemi, C. Safranski, S.L. Brown, L. Buzi, E.R.J. Edwards, C.P. D’Emic, E. Galligan, M.G. Gottwald, O. Gunawan, H. Jung, J. Kim, K. Latzko, J.J. Nowak, P.L. Trouilloud, S. Zare, D.C. Worledge, 2X reduction of STT-MRAM switching current using double spin-torque magnetic tunnel junction (IEEE International Electron Devices Meeting, San Francisco, 2021)

    Book  Google Scholar 

  18. Antoine Chavent, Paulo V. Coelho, Jyotirmoy Chatterjee, Nikita Strelkov, Stephane Auret, Liliana Buda-Prejbeanu, Ricardo C. Sousa, Laurent Vila, Lucian Prejbeanu, Bernard Dieny, Claire Baraduc, ACS Appl. Electron. Mater. 3, 2607 (2021)

    Article  CAS  Google Scholar 

  19. Daniel Sanchez Hazen, Stéphane. Auffret, Isabelle Joumard, Laurent Vila, Liliana D. Buda-Prejbeanu, Ricardo C. Sousa, Lucian Prejbeanu, Bernard Dieny, Nanoscale 13, 14096 (2021)

    Article  Google Scholar 

  20. D.C. Worledge, IEEE Magn Lett. 8, 4306505 (2017)

    Article  Google Scholar 

  21. J.Z. Sun, Phys. Rev. B 62, 570 (2000)

    Article  CAS  Google Scholar 

  22. J. Slonczewski, Theory of spin-polarized current and spin-transfer torque in magnetic multilayers, in Handbook of Magnetism and Advanced Magnetic Materials, vol. 5, ed. by H. Kronmuller, S. Parkin (Wiley, Hoboken, 2007), pp.2648–2667

    Google Scholar 

  23. G. Hu, T. Topuria, P.M. Rice, J. Jordan-Sweet, D.C. Worledge, IEEE Magn Lett 4, 3000104 (2013)

    Article  Google Scholar 

  24. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004)

    Article  CAS  Google Scholar 

  25. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004)

    Article  CAS  Google Scholar 

  26. S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990)

    Article  CAS  Google Scholar 

  27. D.C. Worledge, P.L. Trouilloud, Appl. Phys. Lett. 83, 84 (2003)

    Article  CAS  Google Scholar 

  28. C. Safranski, G. Hu, J.Z. Sun, P. Hashemi, S.L. Brown, L. Buzi, C.P. D’Emic, E.R.J. Edwards, E. Galligan, M.G. Gottwald, O. Gunawan, S. Karimeddiny, H. Jung, J. Kim, K. Latzko, P.L. Trouilloud, S. Zare, D.C. Worledge, Reliable Sub-nanosecond MRAM with Double Spin-torque Magnetic Tunnel Junctions (IEEE Symposium on VLSI Technology and Circuits, Honolulu, 2022), p.288

    Google Scholar 

  29. C. Safranski, G. Hu, J.Z. Sun, P. Hashemi, S.L. Brown, L. Buzi, C.P. D’Emic, E.R.J. Edwards, E. Galligan, M.G. Gottwald, O. Gunawan, S. Karimeddiny, H. Jung, J. Kim, K. Latzko, P.L. Trouilloud, D.C. Worledge, Reliable Sub-nanosecond MRAM with Double Spin-torque Magnetic Tunnel Junctions, vol. 69 (IEEE Transactions on Electron Devices, Honolulu, 2022), p.7180

    Google Scholar 

  30. G. Hu, C. Safranski, J.Z. Sun, P. Hashemi, S.L. Brown, J. Bruley, L. Buzi, C.P. D’Emic, E. Galligan, M.G. Gottwald, O. Gunawan, J. Lee, S. Karimeddiny, P.L. Trouilloud, D.C. Worledge, IEEE Int. Electron Devices Meet. 10(2), 1 (2022)

    Google Scholar 

  31. G. Hu, M.G. Gottwald, Q. He, J.H. Park, G. Lauer, J.J. Nowak, S.L. Brown, B. Doris, D. Edelstein, E.R. Evarts, P. Hashemi, B. Khan, Y.H. Kim, C. Kothandaraman, N. Marchack, E.J. O’Sullivan, M. Reuter, R.P. Robertazzi, J.Z. Sun, T. Suwannasiri, P.L. Trouilloud, Y. Zhu, D.C. Worledge, IEEE Int. Electron Devices Meet. 38(3), 1 (2017)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge contributions from the IBM MRAM team in Yorktown Heights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Worledge.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worledge, D.C., Hu, G. A snapshot review of double magnetic junctions for STT-MRAM. MRS Advances 8, 131–137 (2023). https://doi.org/10.1557/s43580-023-00538-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00538-w

Navigation