Skip to main content

Advertisement

Log in

Modulation of optical properties in epitaxial ZnO thin films on synthetic mica by incorporating Mg and bending stress

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The optical properties of ZnO thin films were modulated using Mg alloying and applying bending stress. To modulate the optical properties using bending stress, synthetic mica was employed as a flexible substrate and the epitaxial growth was achieved by mist chemical vapor deposition (mist CVD). In addition, a ZnMgO alloy thin film was grown by mixing Mg precursors. Based on the previous studies on the relationship between Mg composition in the films and c-axis length, the Mg composition in the ZnMgO thin film was approximately 18%. Transmittance and photoluminescence (PL) spectra revealed that the optical properties of ZnO were also modulated by the Mg alloying. Moreover, the PL peak energies of the epitaxial ZnO and ZnMgO thin films were red shifted by approximately 15 meV due to the applied bending stress.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42–46 (2005). https://doi.org/10.1038/nmat1284

    Article  CAS  Google Scholar 

  2. L. Gong, Z. Ye, J. Lu, L. Zhu, J. Huang, X. Gu, B. Zhao, Vacuum 84, 947–952 (2010). https://doi.org/10.1016/j.vacuum.2010.01.010

    Article  CAS  Google Scholar 

  3. F. Rahman, Opt. Eng. 58, 010901 (2019). https://doi.org/10.1117/1.OE.58.1.010901

    Article  CAS  Google Scholar 

  4. X. Liao, X. Yan, P. Lin, S. Lu, Y. Tian, Y. Zhang, ACS Appl. Mater. Interfaces 7, 1602–1607 (2015). https://doi.org/10.1021/am5070443

    Article  CAS  Google Scholar 

  5. F.C. Krebs, Org. Electron. 10, 761–768 (2009). https://doi.org/10.1016/j.orgel.2009.03.009

    Article  CAS  Google Scholar 

  6. X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen, H. Xu, H. Yao, Y. Li, J. Hou, Y. Li, Adv. Mater. 32, 1908478 (2020). https://doi.org/10.1002/adma.201908478

    Article  CAS  Google Scholar 

  7. F. Alema, O. Ledyaev, R. Miller, V. Beletsky, A. Osinsky, W.V. Schoenfeld, J. Cryst. Growth 435, 6–11 (2016). https://doi.org/10.1016/j.jcrysgro.2015.11.012

    Article  CAS  Google Scholar 

  8. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72, 2466–2468 (1998). https://doi.org/10.1063/1.121384

    Article  CAS  Google Scholar 

  9. K. Koike, K. Hama, I. Nakashima, G.-Y. Takada, K.-I. Ogata, S. Sasa, M. Inoue, M. Yano, J. Cryst. Growth 278, 288–292 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.021

    Article  CAS  Google Scholar 

  10. T.A. Wassner, B. Laumer, S. Maier, A. Laufer, B.K. Meyer, M. Stutzmann, M. Eickhoff, J. Appl. Phys. 105, 023505 (2009). https://doi.org/10.1063/1.3065535

    Article  CAS  Google Scholar 

  11. H. Nishinaka, Y. Kamada, N. Kameyama, S. Fujita, Phys. Status Solidi B 247, 1460–1463 (2010). https://doi.org/10.1002/pssb.200983247

    Article  CAS  Google Scholar 

  12. P. Rutthongjan, L. Liu, M. Nishi, M. Sakamoto, S. Sato, E.K.C. Pradeep, G.T. Dang, T. Kwaharamura, Jpn. J. Appl. Phys. 58, 035503 (2019). https://doi.org/10.7567/1347-4065/aafd18

    Article  CAS  Google Scholar 

  13. R. Ghosh, D. Basak, S. Fujihara, J. Appl. Phys. 96, 2689–2692 (2004). https://doi.org/10.1063/1.1769598

    Article  CAS  Google Scholar 

  14. A.B.M.A. Ashrafi, N.T. Binh, B.-P. Zhang, Y. Segawa, Appl. Phys. Lett. 84, 2814–2816 (2004). https://doi.org/10.1063/1.1705722

    Article  CAS  Google Scholar 

  15. T.P. Rao, M.C.S. Kumar, S.A. Angayarkanni, M. Ashok, J. Alloys Compd. 485, 413–417 (2009). https://doi.org/10.1016/j.jallcom.2009.05.116

    Article  CAS  Google Scholar 

  16. B. Wei, K. Zheng, Y. Ji, Y. Zhang, Z. Zhang, X. Han, Nano Lett. 12, 4595–4599 (2012). https://doi.org/10.1021/nl301897q

    Article  CAS  Google Scholar 

  17. R. Chen, Q.-L. Ye, T.C. He, T. Wu, H.D. Sun, Appl. Phys. Lett. 98, 241916 (2011). https://doi.org/10.1063/1.3601479

    Article  CAS  Google Scholar 

  18. F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, J. Phys. Chem. C 114, 12477–12480 (2010). https://doi.org/10.1021/jp1037975

    Article  CAS  Google Scholar 

  19. A. Koma, Thin Solid Films 216, 72–76 (1992). https://doi.org/10.1016/0040-6090(92)90872-9

    Article  CAS  Google Scholar 

  20. C.-I. Li, J.-C. Lin, H.-J. Liu, M.-W. Chu, H.-W. Chen, C.-H. Ma, C.-Y. Tsai, H.-W. Huang, H.-J. Lin, H.-L. Liu, P.-W. Chiu, Y.-H. Chu, Chem. Mater. 28, 3914–3919 (2016). https://doi.org/10.1021/acs.chemmater.6b01180

    Article  CAS  Google Scholar 

  21. C.-H. Ma, J.-C. Lin, H.-J. Liu, T.H. Do, Y.-M. Zhu, T.D. Ha, Q. Zhan, J.-Y. Juang, Q. He, E. Arenholz, P.-W. Chiu, Y.-H. Chu, Appl. Phys. Lett. 108, 3104 (2016). https://doi.org/10.1063/1.4954172

    Article  CAS  Google Scholar 

  22. M. Yen, Y.-H. Lai, C.-L. Zhang, H.-Y. Cheng, Y.-T. Hsieh, J.-W. Chen, Y.-C. Chen, L. Chang, N.-T. Tsou, J.-Y. Li, Y.-H. Chu, ACS Appl. Mater. Interfaces 12, 21818–21826 (2020). https://doi.org/10.1021/acsami.0c02275

    Article  CAS  Google Scholar 

  23. B. Li, L. Ding, P. Gui, N. Liu, Y. Yue, Z. Chen, Z. Song, J. Wen, H. Lei, Z. Zhu, X. Wang, M. Su, L. Liao, Y. Gao, D. Zhang, G. Fang, Adv. Mater. Interfaces 6, 1901156 (2019). https://doi.org/10.1002/admi.201901156

    Article  CAS  Google Scholar 

  24. H.-G. Chen, Y.-H. Shih, H.-S. Wang, S.-R. Jian, T.-Y. Yang, S.-C. Chuang, Coatings 12, 706 (2022). https://doi.org/10.3390/coatings12050706

    Article  CAS  Google Scholar 

  25. S. Ke, J. Xie, C. Chen, P. Lin, X. Zeng, L. Shu, L. Fei, Y. Wang, M. Ye, D. Wang, Appl. Phys. Lett. 112, 031905 (2018). https://doi.org/10.1063/1.5010358

    Article  CAS  Google Scholar 

  26. Y. Arata, H. Nishinaka, K. Shimazoe, M. Yoshimoto, MRS Adv. 5, 1671–1679 (2020). https://doi.org/10.1557/adv.2020.85

    Article  CAS  Google Scholar 

  27. D. Tahara, H. Nishinaka, S. Morimoto, M. Yoshimoto, Appl. Phys. Lett. 112, 152102 (2018). https://doi.org/10.1063/1.5021296

    Article  CAS  Google Scholar 

  28. G.T. Dang, T. Kawaharamura, M. Furuta, M.W. Allen, IEEE Electron Device Lett. 36, 463–465 (2015). https://doi.org/10.1109/LED.2015.2412124

    Article  CAS  Google Scholar 

  29. Y. Ogura, Y. Arata, H. Nishinaka, M. Yoshimoto, Jpn. J. Appl. Phys. 61, SC1037 (2022). https://doi.org/10.35848/1347-4065/ac4688

    Article  Google Scholar 

  30. S.C. Abrahams, J.L. Bernstein, Acta Cryst. B25, 1233–1236 (1969). https://doi.org/10.1107/S0567740869003876

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the JST SPRING (Grant Number JPMJSP2107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Arata.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arata, Y., Nishinaka, H., Kanegae, K. et al. Modulation of optical properties in epitaxial ZnO thin films on synthetic mica by incorporating Mg and bending stress. MRS Advances 8, 371–375 (2023). https://doi.org/10.1557/s43580-023-00534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00534-0

Navigation