Abstract
Carbon nanotube forests (CNTFs) were grown on a patterned substrate to form square pixelated arrays. Two-level full factorial optimization first determined the best conditions for synthesis by chemical vapor deposition catalyzed by iron (Fe) nanoparticles deposited on oxidized silicon substrates. Varied parameters included growth temperature, growth time, and acetylene-to-hydrogen gas flow rate ratio. Argon was used as a carrier gas. Unpatterned CNTF heights were grown with values from 15.3 to 185.7 microns. Reactive ion etching of the substrate in oxygen plasma dramatically improved forest growth rates. Uniform square 7 × 7 pixel arrays were produced by contact photolithography and lift-off of the deposited Fe. Each pixel was subdivided into square islands separated by gaps with different island and gap dimensions, which ranged from 4 to 50 microns and 1 to 10 microns, respectively. The results demonstrate the fabrication of thermally and electrically isolated vertically aligned CNTF islands, which have applications to batteries, sensors, infrared absorbers, and infrared or electron emitters.
Graphical Abstract
Similar content being viewed by others
Data availability
Data are available from the authors upon reasonable request.
References
H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qu, Mater. Sci. Eng. R 70, 63 (2010). https://doi.org/10.1016/j.mser.2010.06.003
J.-Q. Huang, Q. Zhang, M.-Q. Zhao, F. Wei, Chin. Sci. Bull. 57, 157 (2012). https://doi.org/10.1007/s11434-011-4879-z
E.G. Rakov, Russ. Chem. Rev. 82, 538 (2013). https://doi.org/10.1070/RC2013v082n06ABEH004340
N.M. Mubarak, F. Yusof, M.F. Alkhatib, Chem. Eng. J. 168, 461 (2011). https://doi.org/10.1016/j.cej.2011.01.045
R. Lin, P.-L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B.K. Teo, Y. Gogotsi, P. Simon, J. Phys. Chem. Lett. 2, 2396 (2011). https://doi.org/10.1021/jz201065t
L. Yu, G.Z. Chen, Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00272
S. Chun, W. Son, C. Choi, Carbon 139, 586 (2018). https://doi.org/10.1016/j.carbon.2018.07.005
P.R. Mudimela, M. Scardamaglia, O. Gonzalez-Leon, N. Reckinger, R. Snyders, E. Llobet, C. Bittencourt, J.F. Colomer, Beilstein J. Nanotechnology 5, 910 (2014). https://doi.org/10.3762/bjnano.5.104
Z. Zhu, L. Garcia-Gancedo, C. Chen, X.R. Zhu, H.Q. Xie, A.J. Flewitt, W.I. Milne, Sens. Actuators B-Chem. 178, 586 (2013). https://doi.org/10.1016/j.snb.2012.12.112
S. Fan, M. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999). https://doi.org/10.1126/science.283.5401.512
M.O. Hassan, A. Nojeh, K. Takahata, ACS Appl. Nano Mater. 2, 4594 (2019). https://doi.org/10.1021/acsanm.9b00948
A.M. Gheitaghy, A. Ghaderib, S. Vollebregta, M. Ahmadic, R. Wolffenbuttel, G.Q. Zhang, Materials Res. Bull. 126, 110821 (2020). https://doi.org/10.1016/j.materresbull.2020.110821
W. R. Owens, D. L. Barker, US patent 9241115, Jan 19, 2016.
R. Fainchtein, D. M. Brown, C. C. Davis, US Patent 20130048884 A1 February 28, 2013).
J. D. LaVeigne, G. P. Matis, T. E. Danielson, US Patent 20220256654 A1, August 11, 2022.
Y. Hayamizu, T. Yamada, K. Mizuno et al., Nature Nanotech. 3, 289–294 (2008). https://doi.org/10.1038/nnano.2008.98
M.F.L. De Volder et al., J. Micromech. Microeng. 21, 045033 (2011). https://doi.org/10.1088/0960-1317/21/4/045033
G.E.P. Box, W.G. Hunter, S.J. Hunter, Statistics for Experimenters (Wiley, New York, 1978)
I. Willems, Z. Kónya, J.-F. Colomer, G. Van Tendeloo, N. Nagaraju, A. Fonseca, J.B. Nagy, Chem. Phys. Lett. 317, 71 (2000). https://doi.org/10.1063/1.1342509
T. Ikuno, J.-T. Ryu, T. Oyama, S. Ohkura, Y.G. Baek, S. Honda, M. Katayama, T. Hirao, K. Oura, Vacuum 66, 341 (2002). https://doi.org/10.1016/S0042-207X(02)00141-0
R.G. Lacerda, A.S. The, M.H. Yang, K.B.K. Teo, N.L. Rupesinghe, S.H. Dalal, K.K.K. Koziol, D. Roy, G.A.J. Amaratunga, W.I. Milne, M. Chhowalla, D.G. Hasko, F. Wyczisk, P. Legagneux, Appl. Phys. Lett. 84, 269 (2004). https://doi.org/10.1063/1.1639509
A.K. Mahapatro, A. Scott, A. Manning, D.B. Janes, Appl. Phys. Lett. 88, 151917 (2006). https://doi.org/10.1063/1.2183820
M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Nature 388, 52 (1997). https://doi.org/10.1038/40369
J.Q. Huang, Q. Zhang, M.Q. Zhao, G.-H. Xu, F. Wei, Nanoscale 2, 1401 (2010). https://doi.org/10.1039/c0nr00203h
Acknowledgments
This work was supported by Santa Barbara Infrared Inc.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
R. E. Peale has ownership in Truventic LLC and may benefit financially from the results of this research. Otherwise, all authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Smalley, D., Ishigami, M. & Peale, R.E. Pixelated carbon nanotube forests. MRS Advances 8, 361–364 (2023). https://doi.org/10.1557/s43580-023-00527-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-023-00527-z