Skip to main content
Log in

Pixelated carbon nanotube forests

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon nanotube forests (CNTFs) were grown on a patterned substrate to form square pixelated arrays. Two-level full factorial optimization first determined the best conditions for synthesis by chemical vapor deposition catalyzed by iron (Fe) nanoparticles deposited on oxidized silicon substrates. Varied parameters included growth temperature, growth time, and acetylene-to-hydrogen gas flow rate ratio. Argon was used as a carrier gas. Unpatterned CNTF heights were grown with values from 15.3 to 185.7 microns. Reactive ion etching of the substrate in oxygen plasma dramatically improved forest growth rates. Uniform square 7 × 7 pixel arrays were produced by contact photolithography and lift-off of the deposited Fe. Each pixel was subdivided into square islands separated by gaps with different island and gap dimensions, which ranged from 4 to 50 microns and 1 to 10 microns, respectively. The results demonstrate the fabrication of thermally and electrically isolated vertically aligned CNTF islands, which have applications to batteries, sensors, infrared absorbers, and infrared or electron emitters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  1. H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qu, Mater. Sci. Eng. R 70, 63 (2010). https://doi.org/10.1016/j.mser.2010.06.003

    Article  CAS  Google Scholar 

  2. J.-Q. Huang, Q. Zhang, M.-Q. Zhao, F. Wei, Chin. Sci. Bull. 57, 157 (2012). https://doi.org/10.1007/s11434-011-4879-z

    Article  CAS  Google Scholar 

  3. E.G. Rakov, Russ. Chem. Rev. 82, 538 (2013). https://doi.org/10.1070/RC2013v082n06ABEH004340

    Article  CAS  Google Scholar 

  4. N.M. Mubarak, F. Yusof, M.F. Alkhatib, Chem. Eng. J. 168, 461 (2011). https://doi.org/10.1016/j.cej.2011.01.045

    Article  CAS  Google Scholar 

  5. R. Lin, P.-L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B.K. Teo, Y. Gogotsi, P. Simon, J. Phys. Chem. Lett. 2, 2396 (2011). https://doi.org/10.1021/jz201065t

    Article  CAS  Google Scholar 

  6. L. Yu, G.Z. Chen, Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00272

    Article  Google Scholar 

  7. S. Chun, W. Son, C. Choi, Carbon 139, 586 (2018). https://doi.org/10.1016/j.carbon.2018.07.005

    Article  CAS  Google Scholar 

  8. P.R. Mudimela, M. Scardamaglia, O. Gonzalez-Leon, N. Reckinger, R. Snyders, E. Llobet, C. Bittencourt, J.F. Colomer, Beilstein J. Nanotechnology 5, 910 (2014). https://doi.org/10.3762/bjnano.5.104

    Article  CAS  Google Scholar 

  9. Z. Zhu, L. Garcia-Gancedo, C. Chen, X.R. Zhu, H.Q. Xie, A.J. Flewitt, W.I. Milne, Sens. Actuators B-Chem. 178, 586 (2013). https://doi.org/10.1016/j.snb.2012.12.112

    Article  CAS  Google Scholar 

  10. S. Fan, M. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999). https://doi.org/10.1126/science.283.5401.512

    Article  CAS  Google Scholar 

  11. M.O. Hassan, A. Nojeh, K. Takahata, ACS Appl. Nano Mater. 2, 4594 (2019). https://doi.org/10.1021/acsanm.9b00948

    Article  CAS  Google Scholar 

  12. A.M. Gheitaghy, A. Ghaderib, S. Vollebregta, M. Ahmadic, R. Wolffenbuttel, G.Q. Zhang, Materials Res. Bull. 126, 110821 (2020). https://doi.org/10.1016/j.materresbull.2020.110821

    Article  CAS  Google Scholar 

  13. W. R. Owens, D. L. Barker, US patent 9241115, Jan 19, 2016.

  14. R. Fainchtein, D. M. Brown, C. C. Davis, US Patent 20130048884 A1 February 28, 2013).

  15. J. D. LaVeigne, G. P. Matis, T. E. Danielson, US Patent 20220256654 A1, August 11, 2022.

  16. Y. Hayamizu, T. Yamada, K. Mizuno et al., Nature Nanotech. 3, 289–294 (2008). https://doi.org/10.1038/nnano.2008.98

    Article  CAS  Google Scholar 

  17. M.F.L. De Volder et al., J. Micromech. Microeng. 21, 045033 (2011). https://doi.org/10.1088/0960-1317/21/4/045033

    Article  CAS  Google Scholar 

  18. G.E.P. Box, W.G. Hunter, S.J. Hunter, Statistics for Experimenters (Wiley, New York, 1978)

    Google Scholar 

  19. I. Willems, Z. Kónya, J.-F. Colomer, G. Van Tendeloo, N. Nagaraju, A. Fonseca, J.B. Nagy, Chem. Phys. Lett. 317, 71 (2000). https://doi.org/10.1063/1.1342509

    Article  CAS  Google Scholar 

  20. T. Ikuno, J.-T. Ryu, T. Oyama, S. Ohkura, Y.G. Baek, S. Honda, M. Katayama, T. Hirao, K. Oura, Vacuum 66, 341 (2002). https://doi.org/10.1016/S0042-207X(02)00141-0

    Article  CAS  Google Scholar 

  21. R.G. Lacerda, A.S. The, M.H. Yang, K.B.K. Teo, N.L. Rupesinghe, S.H. Dalal, K.K.K. Koziol, D. Roy, G.A.J. Amaratunga, W.I. Milne, M. Chhowalla, D.G. Hasko, F. Wyczisk, P. Legagneux, Appl. Phys. Lett. 84, 269 (2004). https://doi.org/10.1063/1.1639509

    Article  CAS  Google Scholar 

  22. A.K. Mahapatro, A. Scott, A. Manning, D.B. Janes, Appl. Phys. Lett. 88, 151917 (2006). https://doi.org/10.1063/1.2183820

    Article  CAS  Google Scholar 

  23. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Nature 388, 52 (1997). https://doi.org/10.1038/40369

    Article  CAS  Google Scholar 

  24. J.Q. Huang, Q. Zhang, M.Q. Zhao, G.-H. Xu, F. Wei, Nanoscale 2, 1401 (2010). https://doi.org/10.1039/c0nr00203h

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Santa Barbara Infrared Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Peale.

Ethics declarations

Conflict of interest

R. E. Peale has ownership in Truventic LLC and may benefit financially from the results of this research. Otherwise, all authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 969 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smalley, D., Ishigami, M. & Peale, R.E. Pixelated carbon nanotube forests. MRS Advances 8, 361–364 (2023). https://doi.org/10.1557/s43580-023-00527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00527-z

Navigation