Skip to main content
Log in

Effect of substrate surface on the wide bandgap SnO2 thin films grown by spin coating

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Tin (IV) oxide (SnO2) sols have been synthesized from SnCl2·2H2O precursor solution by applying two different processing conditions. The prepared sols were then deposited on UV-Ozone-treated quartz and soda lime glass (SLG) substrates by spin coating. The as-synthesized film was soft baked at about 100 °C for 10 min. This process was repeated 5 times to get a compact film, followed by air annealing at 250 °C for 2 h. The pristine and annealed films were characterized by UV–Vis–NIR spectroscopy, Grazing Incident X-Ray Diffraction (GIXRD), and Field Emission Scanning Electron Microscope (FESEM). The effect of the substrate surface was investigated by measuring the contact angles with De-Ionized (DI) water. UV-Ozone treatment of substrate provides a cleaner surface to grow a homogeneous film. The electrical resistivity of annealed thin films was carried out by a four-point collinear probe employing the current reversal technique and found in the range of ~ 2 × 103 to 3 × 103 Ω·cm. Film thickness was found in the range of ~ 137–285 nm, measured by a stylus profilometer. UV–Vis–NIR transmission data revealed that all the thin-film samples showed maximum (82–89) % transmission in the visible range. The optical bandgap of the thin films was estimated to be ~ 3.75–4.00 eV and ~ 3.78–4.35 eV for the films grown on SLG and quartz substrates, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. B.C. Ghos, S.F.U. Farhad, M.A.M. Patwary, S. Majumder, M.A. Hossain, N.I. Tanvir, M.A. Rahman, T. Tanaka, Q. Guo, Influence of the substrate, process conditions, and post-annealing temperature on the properties of ZnO thin films grown by the successive ionic layer adsorption and reaction method. ACS Omega 6(4), 2665–2674 (2021). https://doi.org/10.1021/acsomega.0c04837

    Article  CAS  Google Scholar 

  2. M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol-gel deposited Al-doped ZnO thin films. Surf. Interfaces 16, 120–126 (2019). https://doi.org/10.1016/j.surfin.2019.05.007

    Article  CAS  Google Scholar 

  3. S.F.U. Farhad, M.A. Hossain, N.I. Tanvir, R. Akter, M.A.M. Patwary, M. Shahjahan, M.A. Rahman, Structural, optical, electrical, and photoelectrochemical properties of cuprous oxide thin films grown by modified SILAR method. Mater. Sci. Semicond. Process. 95, 68–75 (2019). https://doi.org/10.1016/j.mssp.2019.02.014

    Article  CAS  Google Scholar 

  4. S.F.U. Farhad, D. Cherns, J.A. Smith, N.A. Fox, D.J. Fermín, Pulsed laser deposition of single phase n- and p-type Cu2O thin films with low resistivity. Mater. Des. 193, 108848 (2020). https://doi.org/10.1016/j.matdes.2020.108848

    Article  CAS  Google Scholar 

  5. M.R. Islam, M. Saiduzzaman, S.S. Nishat, A. Kabir, S.F.U. Farhad, Synthesis, characterization and visible light-responsive photocatalysis properties of Ce doped CuO nanoparticles: a combined experimental and DFT+U study. Colloids Surf. A Physicochem. Eng. Asp. 617, 126386 (2021). https://doi.org/10.1016/j.colsurfa.2021.126386

    Article  CAS  Google Scholar 

  6. S.F.U. Farhad, N.I. Tanvir, M.S. Bashar, M. Sultana, Synthesis and characterization of c-Axis oriented zinc oxide thin film and its use for the subsequent hydrothermal growth of zinc oxide nanorods. MRS Advances 4(16), 921–928 (2018). https://doi.org/10.1557/adv.2019.65

    Article  CAS  Google Scholar 

  7. Q. Jiang, X. Zhang, J. You, SnO2: A wonderful electron transport layer for perovskite solar cells. Small 14(31), 1801154 (2018). https://doi.org/10.1002/smll.201801154

    Article  CAS  Google Scholar 

  8. G.K. Dalapati, H. Sharma, A. Guchhait, N. Chakrabarty, P. Bamola, Q. Liu, G. Saianand, A.M.S. Krishna, S. Mukhopadhyay, A. Dey, T.K.S. Wong, S. Zhuk, S. Ghosh, S. Chakrabortty, C. Mahata, S. Biring, A. Kumar, C.S. Ribeiro, S. Ramakrishna, A.K. Chakraborty, S. Krishnamurthy, P. Sonar, M. Sharma, Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review. J. Mater. Chem. A 9(31), 16621–16684 (2021). https://doi.org/10.1039/D1TA01291F

    Article  CAS  Google Scholar 

  9. S.F.U. Farhad, N.I. Tanvir, M.R. Molla, Bismuth based metal oxide photoelectrode materials for photoelectrochemical generation of solar fuels. Mendeley Data (2022). https://doi.org/10.17632/b7x8khsm65.2

    Article  Google Scholar 

  10. S.P. Ratnayake, J. Ren, B.J. Murdoch, J. van Embden, D.E. Gómez, C.F. McConville, E.D. Gaspera, Nanostructured electrodes based on two-dimensional SnO2 for photo-electrochemical water splitting. ACS Appl. Energy Mater. 5(9), 10359–10365 (2022). https://doi.org/10.1021/acsaem.2c01087

    Article  CAS  Google Scholar 

  11. M. Rahayi, M.H. Ehsani, A.C. Nkele, M.M. Shahidi, F.I. Ezema, Synthesis and characterization of tin (IV) oxide thin films. Opt. Quantum Electron. 53, 222 (2021). https://doi.org/10.1007/s11082-021-02896-x

    Article  CAS  Google Scholar 

  12. F.R. Chowdhury, S. Choudhury, F. Hasan, T. Begum, Optical properties of undoped and Indium-doped tin oxide thin films. J. Bangladesh Acad. Sci. 35(1), 99–111 (2011). https://doi.org/10.3329/jbas.v35i1.7975

    Article  CAS  Google Scholar 

  13. V. Janakiraman, V. Tamilnayagam, R.S. Sundararajan, S. Sivabalan, B. Sathyaseelan, Physiochemical properties of tin oxide thin films deposited by spray pyrolysis. Dig. J. Nanomater. Biostructures 15(3), 849–855 (2020)

    Article  Google Scholar 

  14. L. Lin, T.W. Jones, J.T.-W. Wang, A. Cook, N.D. Pham, N.W. Duffy, B. Mihaylov, M. Grigore, K.F. Anderson, B.C. Duck, H. Wang, J. Pu, J. Li, B. Chi, G.J. Wilson, Strategically constructed bilayer tin (IV) oxide as electron transport layer boosts performance and reduces hysteresis in perovskite solar cells. Small 16(12), 1901466 (2019). https://doi.org/10.1002/smll.201901466

    Article  CAS  Google Scholar 

  15. T. Oshima, T. Okuno, S. Fujita, UV-B sensor based on a SnO2 thin film. Japanese J. Appl. Phys. 48(12R), 120207 (2009). https://doi.org/10.1143/JJAP.48.120207

    Article  CAS  Google Scholar 

  16. R. Islam, G. Chen, P. Ramesh, J. Suh, N. Fuchigami, D. Lee, K.A. Littau, K. Weiner, R.T. Collins, K.C. Saraswat, Investigation of the changes in electronic properties of nickel oxide (NiOx) due to UV/Ozone treatment. ACS Appl. Mater. Interfaces 9(20), 17201–17207 (2017). https://doi.org/10.1021/acsami.7b01629

    Article  CAS  Google Scholar 

  17. Y. Zhao, Y. Li, X. Ren, F. Gao, H. Zhao, The effect of Eu doping on microstructure, morphology and methanal-sensing performance of highly ordered SnO2 nanorods array. Nanomaterials 7(12), 410 (2017). https://doi.org/10.3390/nano7120410

    Article  CAS  Google Scholar 

  18. D. Simeone, G. Baldinozzi, D. Gosset, S. Le Caer, J.-F. Bérar, Grazing incidence X-ray diffraction for the study of polycrystalline layers. Thin Solid Films 530, 9–13 (2013). https://doi.org/10.1016/j.tsf.2012.07.068

    Article  CAS  Google Scholar 

  19. B.C. Bussell, P.N. Gibson, J. Lawton, P. Couture, M.K. Sharpe, J. England, S.J. Hinder, V. Stolojan, S.A. Thornley, M.A. Baker, The effect of RF plasma power on remote plasma sputtered AZO thin films. Surf. Coat. Technol. 442, 128402 (2022). https://doi.org/10.1016/j.surfcoat.2022.128402

    Article  CAS  Google Scholar 

  20. S. Chen, Z. Sun, L. Zhang, H. Xie, Photodegradation of gas phase benzene by SnO2 nanoparticles by direct hole oxidation mechanism. Catalysts 10(1), 117 (2020). https://doi.org/10.3390/catal10010117

    Article  CAS  Google Scholar 

  21. S.F.U. Farhad, N.I. Tanvir, M.S. Bashar, M.S. Hossain, M. Sultana, N. Khatun, Facile synthesis of oriented zinc oxide seed layer for the hydrothermal growth of zinc oxide nanorods. Bangladesh J. Sci. Ind. Res. 53(4), 233–244 (2018). https://doi.org/10.3329/bjsir.v53i4.39186

    Article  CAS  Google Scholar 

  22. M. Neuschitzer, A. Moser, A. Neuhold, J. Kraxner, B. Stadlober, M. Oehzelt, I. Salzmann, R. Resel, J. Novák, Grazing-incidence in-plane X-ray diffraction on ultra-thin organic films using standard laboratory equipment. J. Appl. Crystallogr. 45(2), 367–370 (2012). https://doi.org/10.1107/S0021889812000908

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All the authors gratefully acknowledge the experimental support of the Energy Conversion and Storage Research (ECSR) Section, Industrial Physics Division, BCSIR Dhaka Laboratories, Dhaka 1205, Bangladesh Council of Scientific and Industrial Research (BCSIR), under the scope of R&D project # 03-FY2017-2022. S.F.U. Farhad acknowledges the support of TWAS grant # 20-143 RG/PHYS/AS_I for ECSR, IPD. Special thanks to Institute of Fuel Research and Development (IFRD), Biomedical & Toxicological Research Institute (BTRI), and BCSIR for helping with Stylus profiler and FESEM image recording, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Farid Uddin Farhad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitu, M.N.A., Tanvir, N.I., Islam, S. et al. Effect of substrate surface on the wide bandgap SnO2 thin films grown by spin coating. MRS Advances 8, 194–200 (2023). https://doi.org/10.1557/s43580-023-00515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00515-3

Navigation