Skip to main content

Advertisement

Log in

First-principles study of H2 adsorption mechanism on defective MoSe2/graphene heterostructures

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Recently, as a promising energy carrier, hydrogen attracted intensive research interest. In the present work, the spin-polarized density-functional theory (DFT) is applied to investigate the adsorption of hydrogen-gas molecules on six different adsorbents: (1) MoSe2 monolayer (ML) with single vacancy of Mo; (2) Mn-doped MoSe2 ML at either Mo or Se site; (3) MoSe2:VMo/graphene heterostructure; and (4) MoSe2:Mn/graphene heterostructure. MoSe2:VMo/graphene heterostructure showed the highest adsorption energy of − 0.41 eV, but H2 molecule exhibits chemisorption associated with dissociation which qualify it for gas sensing applications. MoSe2:Mn doping Se site stands prone to be the best candidate for H2 storage. The energy adsorption of H2 molecule on top of Mn site is Eads = − 0.28 eV. The desorption is shown to cost an energy of about 0.36 eV. Furthermore, the uptake capacity can further be enhanced by increasing the doping concentration of Mn (e.g., MoSe2:2Mn@2Se was tested and found to reach 2.9% wt).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. B. Sorensen, G. Spazzafumo, Hydrogen and Fuel Cells, 3rd edn. (Elsevier, Holland, 2018)

    Google Scholar 

  2. B.C. Tashie-Lewis, S.G. Nnabuife, Chem. Eng. J. Adv. 8, 100172 (2021)

    Article  CAS  Google Scholar 

  3. H. Li, X. Cao, Y. Liu, Y. Shao, Z. Nan, L. Teng, W. Peng, J. Bian, Energy Rep. 8, 6258 (2022)

    Article  Google Scholar 

  4. L. Najafi, S. Bellani, R. Oropesa-Nuñez, A. Ansaldo, M. Prato, A.E. Del Rio Castillo, F. Bonaccorso, Adv. Energy Mater. 8, 1703212 (2018)

    Article  Google Scholar 

  5. Z. Liu, N. Li, H. Zhao, Y. Du, J. Mater. Chem. A 3, 19706 (2015)

    Article  CAS  Google Scholar 

  6. S. Mao, Z. Wen, S. Ci, X. Guo, K. Ostrikov, J. Chen, Small 11, 414 (2015)

    Article  CAS  Google Scholar 

  7. B. Qu, C. Li, C. Zhu, S. Wang, X. Zhang, Y. Chen, Nanoscale 8, 16886 (2016)

    Article  CAS  Google Scholar 

  8. D.K. Sharma, S. Kumar, S. Auluck, Int. J. Hydrogen Energy 43, 23126 (2018)

    Article  CAS  Google Scholar 

  9. J. Hafner, J. Comput. Chem. 29, 2044 (2008)

    Article  CAS  Google Scholar 

  10. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)

    Article  CAS  Google Scholar 

  11. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  Google Scholar 

  12. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  13. G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the National Water and Energy Center (NWEC) at the UAE University for the financial support (Grants numbers: 31R145 and 12R125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacir Tit.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3530 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfalasi, W., Tit, N. First-principles study of H2 adsorption mechanism on defective MoSe2/graphene heterostructures. MRS Advances 8, 365–370 (2023). https://doi.org/10.1557/s43580-022-00485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00485-y

Navigation