Skip to main content
Log in

Carbon nanomaterials synthesis by chemical vapor deposition from conifer exudate

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon nanostructures were synthesized using coniferous exudate commonly known as rosin as precursor due their high carbon content, low cost, and because it is a renewable material with high availability. The synthesis of the carbon nanostructures (CNSs) was carried out by the chemical vapor deposition (CVD) technique with a stainless steel AISI 304 bar as catalyst and argon as the carrier gas at 750, 800, 850, and 900 °C during 30 and 60 min at atmospheric pressure. The scanning electron microscopy demonstrated the formation of mostly spherical and some tubular carbon nanostructures of different diameters. The carbon spheres at higher temperatures are more defined; however, they tend to agglomerate. Energy-dispersive spectroscopy analysis demonstrated 84–99% of carbon, 0.25–15.69% of oxygen, and traces of chromium and iron. The Fourier transform infrared spectra indicated the presence of OH, C=O, C=C, and CHx functional groups. The presence of hydroxyl and carbonyl groups can be useful for higher interaction of CNSs with different materials in some usage. Typical D, G, and G′ bands of CNSs were observed by Raman spectroscopy. The ID/IG ratio show high degree of graphitization of CNSs. The value of IG′/IG ratio indicates that the CNSs are multilayer. X-ray diffraction patterns show that the CNSs obtained at 30 min are more crystalline. The CNSs synthesized from rosin by CVD can be used in different fields of science and technology.

Graphical abstract

Raman spectra of nanostructures obtained from rosin by CVD

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. W. Wang, Y. Hou, D. Martinez, D. Kurniawan, W.H. Chiang, P. Bartolo, Polymers (2020). https://doi.org/10.3390/polym12122946

    Article  Google Scholar 

  2. J.M. Ambriz-Torres, C.J. Gutiérrez-García, D.L. García-Ruiz, J.J. Contreras-Navarrete, F.G. Granados-Martínez, N. Flores-Ramírez, M.L. Mondragón-Sánchez, L. García-González, L. Zamora-Peredo, O. Hernández-Cristóbal, F. Méndez, L. Domratcheva-Lvova, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-02868-z

    Article  Google Scholar 

  3. Y.Z. Jin, C. Gao, W.K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, D.R. Walton, Carbon (2005). https://doi.org/10.1016/j.carbon.2005.03.002

    Article  Google Scholar 

  4. A.R.K. Rezaei, Dia Rel Mater. (2018). https://doi.org/10.1016/j.diamond.2018.02.003

    Article  Google Scholar 

  5. H.J. Muñoz-Flores, J.H. Ramos, J.T. Sáenz-Reyes, R. Reynoso-Santos, R. Barrera-Ramírez, Rev. Mex de Cie For. (2022). https://doi.org/10.29298/rmcf.v13i73.1188

    Article  Google Scholar 

  6. S. Ravi, S. Vadukumpully, J. Environ. Chem. Eng. (2016). https://doi.org/10.1016/j.jece.2015.11.026

    Article  Google Scholar 

  7. A.A. Aboul-Enein, A.E. Awadallah, S.M. Solyman, H.A. Ahmed, Fuller. Nanotub. Carbon Nanostruct. (2022). https://doi.org/10.1080/1536383X.2021.2023133

    Article  Google Scholar 

  8. P. Anastas, N. Eghbali, Chem. Soc. Rev. (2010). https://doi.org/10.1039/B918763B

    Article  Google Scholar 

  9. K. Awasthi, R. Kumar, R.S. Tiwari, O.N. Srivastava, J. Exp. Nanosci. (2010). https://doi.org/10.1080/17458081003664159

    Article  Google Scholar 

  10. S.P. Somani, P.R. Somani, M. Tanemura, S.P. Lau, M. Umeno, Curr. Appl. Phys. (2009). https://doi.org/10.1016/j.cap.2008.01.002

    Article  Google Scholar 

  11. K. Koziol, B.O. Boskovic, N. Yahya, Carbon Oxide Nanostruct. (2011). https://doi.org/10.1007/8611_2010_12

    Article  Google Scholar 

  12. L. Camilli, M. Scarselli, S. Del Gobbo, P. Castrucci, F. Nanni, E. Gautron, S. Leframt, M. De Crescenzi, Carbon (2011). https://doi.org/10.1016/j.carbon.2011.04.014

    Article  Google Scholar 

  13. Q.L. Yan, M. Gozin, F.Q. Zhao, A. Cohen, S.P. Pang, Nanoscale (2016). https://doi.org/10.1039/c5nr07855e

    Article  Google Scholar 

  14. P. Ghosh, T. Soga, R.A. Afre, T. Jimbo, J. Alloys Compd. (2008). https://doi.org/10.1016/j.jallcom.2007.08.027

    Article  Google Scholar 

  15. M. Inagaki, Carbon 35, 711 (1997)

    Article  CAS  Google Scholar 

  16. R. Li, A. Shahbazi, Trends Renew. Energy (2015). https://doi.org/10.17737/tre.2015.1.1.009

    Article  Google Scholar 

  17. J.M. Ambriz-Torres, L.D. Lvova, C.J. García, P. Garnica-González, O. Aguilar-García, J.J. Contreras-Navarrete, MRS Adv. (2022). https://doi.org/10.1557/s43580-022-00338-8

    Article  Google Scholar 

  18. J.A. Guzmán-Fuentes, J.J. Contreras-Navarrete, E. Cadenas-Calderón, J.M. Ambriz-Torres, D.L. García-Ruíz, C.J. Gutiérrez-García, L. Domratcheva-Lvova, MRS Adv. (2020). https://doi.org/10.1557/adv.2020.399

    Article  Google Scholar 

  19. C.J. Gutiérrez-García, J.M. Ambriz-Torres, J.J. Contreras-Navarrete, F.G. Granados-Martínez, D.L. García-Ruiz, L. García-González, L. Domratcheva-Lvova, Physica E (2019). https://doi.org/10.1016/j.physe.2019.04.007

    Article  Google Scholar 

  20. D.L. García-Ruiz, F.G. Granados-Martínez, C.J. Gutiérrez-García, J.M. Ambriz-Torres, J.J. Contreras-Navarrete, N. Flores-Ramírez, L. Domratcheva-Lvova, Rev. Mex. Ing. Quí. (2019). https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/GarciaR

    Article  Google Scholar 

  21. K.R. Gbashi, Iraqi J. Phys. (2017). https://doi.org/10.30723/ijp.v15i35.55

    Article  Google Scholar 

  22. K. Saxena, P. Kumar, V.K. Jain, New Carbon Mater. (2011). https://doi.org/10.1016/S1872-5805(11)60088-7

    Article  Google Scholar 

  23. E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, Carbon (2007). https://doi.org/10.1016/j.carbon.2007.01.003

    Article  Google Scholar 

  24. M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, J. Catal. (2001). https://doi.org/10.1006/jcat.2001.3243

    Article  Google Scholar 

  25. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. (2005). https://doi.org/10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  26. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2196057

    Article  Google Scholar 

  27. R.W. Wyckoff, Cryst. Struct. 1, 7 (1963)

    Google Scholar 

  28. J. Fayos, J. Solid State Chem. (1999). https://doi.org/10.1006/jssc.1999.8448

    Article  Google Scholar 

  29. A.N. Mohan, B. Manoj, Int. J. Electrochem. Sci. 7, 9537 (2012)

    CAS  Google Scholar 

  30. G.C. Allen, K.R. Hallam, J.A. Jutson, Powder Diffr. (1995). https://doi.org/10.1017/S0885715600014779

    Article  Google Scholar 

Download references

Acknowledgments

CIC of the Universidad Michoacana de San Nicolás de Hidalgo, MICRONA of the Universidad Veracruzana, Tecnológico Nacional México/Instituto Tecnológico de Morelia, ENES UNAM Campus Morelia, and CONACYT México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lada Domratcheva-Lvova.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignacio-De la Cruz, J.L., Gutiérrez-García, C.J., Poiré-De la Cruz, D.R. et al. Carbon nanomaterials synthesis by chemical vapor deposition from conifer exudate. MRS Advances 7, 668–673 (2022). https://doi.org/10.1557/s43580-022-00372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00372-6

Navigation