Skip to main content

Quantitative analysis of the impact of disorder on the structural and electrical properties of polymer fibers

Abstract

Quantifying disorder in physical systems can provide unique opportunities to engineer-specific properties. Here, we apply a methodology based on the approach pioneered by Bragg and Williams for metal alloys to quantify the disorder characterizing polymer fibers including polyaniline (PANI), polyaniline-polycaprolactone (PANI-PCL), and polyvinylidene difluoride (PVDF). Both PANI and PVDF possess electrical properties such as conductivity and piezoelectric response that find a wide range of applications in energy storage and tissue engineering. On the other hand, the mechanical properties of polymer fibers can be tuned by varying the concentration of PANI and PCL during synthesis. Here, we demonstrate that it is possible to control the amount of disorder characterizing a fiber, which provides a route to engineering desired values for specific material properties. The resulting measure of disorder is shown to have a direct relationship to Young’s modulus, band gap, and specific capacitance values.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Beygisangchin, S.A. Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers (2021). https://doi.org/10.3390/polym13122003

    Article  Google Scholar 

  2. Y. Chen et al., Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. New J. Chem. 39(6), 4987–4993 (2015). https://doi.org/10.1039/C5NJ00327J

    Article  CAS  Google Scholar 

  3. M.-C. Chen, Y.-C. Sun, Y.-H. Chen, Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater. 9(3), 5562–5572 (2013). https://doi.org/10.1016/j.actbio.2012.10.024

    Article  CAS  Google Scholar 

  4. F.F.F. Garrudo et al., Polyaniline-polycaprolactone blended nanofibers for neural cell culture. Eur. Polym. J. 117, 28–37 (2019). https://doi.org/10.1016/j.eurpolymj.2019.04.048

    Article  CAS  Google Scholar 

  5. S.N. Hanumantharao, C. Que, S. Rao, Self-assembly of 3D nanostructures in electrospun polycaprolactone-polyaniline fibers and their application as scaffolds for tissue engineering. Materialia 6, 100296 (2019). https://doi.org/10.1016/j.mtla.2019.100296

    Article  CAS  Google Scholar 

  6. S.H. Ku, S.H. Lee, C.B. Park, Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Biomaterials 33(26), 6098–6104 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.018

    Article  CAS  Google Scholar 

  7. A. Sanyal, S. Sinha-Ray, Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: a comprehensive review. Polymers (2021). https://doi.org/10.3390/polym13111864

    Article  Google Scholar 

  8. R. Noriega et al., A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. (2013). https://doi.org/10.1038/nmat3722

    Article  Google Scholar 

  9. D. Golodnitsky, E. Strauss, E. Peled, S. Greenbaum, Review—on order and disorder in polymer electrolytes. J. Electrochem. Soc. 162(14), A2551 (2015). https://doi.org/10.1149/2.0161514jes

    Article  CAS  Google Scholar 

  10. R.A. Makin, K.R. York, A.S. Messecar, S.M. Durbin, Quantitative disorder analysis and particle removal efficiency of polypropylene-based masks. MRS Adv. 5(56), 2853–2861 (2020). https://doi.org/10.1557/adv.2020.346

    Article  CAS  Google Scholar 

  11. E.J. Williams, W.L. Bragg, The effect of thermal agitation on atomic arrangement in alloys-III. Proc. R. Soc. Lond. Ser. 152(875), 231–252 (1935). https://doi.org/10.1098/rspa.1935.0188

    Article  CAS  Google Scholar 

  12. S.N. Hanumantharao, C.A. Que, B.J. Vogl, S. Rao, Engineered three-dimensional scaffolds modulating fate of breast cancer cells using stiffness and morphology related cell adhesion. IEEE Open J. Eng. Med. Biol. 1, 41–48 (2020). https://doi.org/10.1109/OJEMB.2020.2965084

    Article  Google Scholar 

  13. R.A. Makin et al., Alloy-free band gap tuning across the visible spectrum. Phys. Rev. Lett. 122(25), 256403 (2019). https://doi.org/10.1103/PhysRevLett.122.256403

    Article  CAS  Google Scholar 

  14. R.A. Makin, K. York, S.M. Durbin, R.J. Reeves, Revisiting semiconductor band gaps through structural motifs: an Ising model perspective. Phys. Rev. B 102(11), 115202 (2020). https://doi.org/10.1103/PhysRevB.102.115202

    Article  CAS  Google Scholar 

  15. J.M. Loveluck, J.B. Sokoloff, Theory of the optical properties of phonon systems with disordered force constants, with application to NH4Cl. J. Phys. Chem. Solids 34(5), 869–884 (1973). https://doi.org/10.1016/S0022-3697(73)80089-7

    Article  CAS  Google Scholar 

  16. J. Zhang, C. Liu, G. Shi, Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes. J. Appl. Polym. Sci. (2005). https://doi.org/10.1002/app.21520

    Article  Google Scholar 

  17. D. Chowdhury, D. Stauffer, Mean-field theory III: Landau formulation, in Principles of Equilibrium Statistical Mechanics (Wiley, New York, 2000), pp.432–469

    Book  Google Scholar 

  18. S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma, Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 34(4), 727 (2011). https://doi.org/10.1007/s12034-011-0187-0

    Article  CAS  Google Scholar 

  19. H. Goktas, Z. Demircioglu, K. Sel, T. Gunes, I. Kaya, The optical properties of plasma polymerized polyaniline thin films. Thin Solid Films 548, 81–85 (2013). https://doi.org/10.1016/j.tsf.2013.09.013

    Article  CAS  Google Scholar 

  20. O. Belgherbi, L. Seid, D. Lakhdari, D. Chouder, M.S. Akhtar, M.A. Saeed, Optical and morphological properties of electropolymerized semiconductor polyaniline thin films: effect of thickness. J. Electron. Mater. 50(7), 3876–3884 (2021). https://doi.org/10.1007/s11664-021-08896-7

    Article  CAS  Google Scholar 

  21. K.T. Vadiraj, S. Belagali, Characterization of polyaniline for optical and electrical properties. IOSR J. Appl. Chem. (2015). https://doi.org/10.9790/5736-0801025356

    Article  Google Scholar 

  22. S. Bhadra, S. Chattopadhyay, N.K. Singha, D. Khastgir, Improvement of conductivity of electrochemically synthesized polyaniline. J. Appl. Polym. Sci. 108(1), 57–64 (2008). https://doi.org/10.1002/app.26926

    Article  CAS  Google Scholar 

  23. G.B.V.S. Lakshmi, A. Dhillon, A.M. Siddiqui, M. Zulfequar, D.K. Avasthi, RF-plasma polymerization and characterization of polyaniline. Eur. Polym. J. 45(10), 2873–2877 (2009). https://doi.org/10.1016/j.eurpolymj.2009.06.027

    Article  CAS  Google Scholar 

  24. W. Shao, R. Jamal, F. Xu, A. Ubul, T. Abdiryim, The effect of a small amount of water on the structure and electrochemical properties of solid-state synthesized polyaniline. Materials (2012). https://doi.org/10.3390/ma5101811

    Article  Google Scholar 

  25. P.K. Szewczyk, D.P. Ura, U. Stachewicz, Humidity controlled mechanical properties of electrospun polyvinylidene fluoride (PVDF) fibers. Fibers (2020). https://doi.org/10.3390/fib8100065

    Article  Google Scholar 

  26. R.L. Hadimani et al., Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart Mater. Struct. 22(7), 075017 (2013). https://doi.org/10.1088/0964-1726/22/7/075017

    Article  CAS  Google Scholar 

  27. J.-H. Lee, J.P. Singer, E.L. Thomas, Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24(36), 4782–4810 (2012). https://doi.org/10.1002/adma.201201644

    Article  CAS  Google Scholar 

  28. T.-C. Lim, Mechanics of Metamaterials with Negative Parameters (Springer, Berlin, 2020)

    Book  Google Scholar 

  29. Z. Hou, B.M. Assouar, Tunable solid acoustic metamaterial with negative elastic modulus. Appl. Phys. Lett. 106(25), 251901 (2015). https://doi.org/10.1063/1.4922873

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with partial support from the National Science Foundation (DMR-2003581, S.D and R.M.) and Western Michigan University. Analysis was performed using hardware received through the NVIDIA Academic Hardware grant program (R.M.). S.H would like to acknowledge supported by the Portage Health Foundation (PHF) Graduate Assistantship and the Michigan Tech Finishing Fellowship.

Funding

Funding was provided by National Science Foundation (Grant Number DMR-2003581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Makin.

Ethics declarations

Conflict of interest

R.M. and S.D. have a pending patent application on tuning polymer properties through disorder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makin, R.A., Hanumantharao, S.N., Rao, S. et al. Quantitative analysis of the impact of disorder on the structural and electrical properties of polymer fibers. MRS Advances 8, 386–391 (2023). https://doi.org/10.1557/s43580-022-00368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00368-2