Skip to main content
Log in

Water vapor plasma-assisted low-temperature bonding of cyclo-olefin polymer for microchannel with integrated leak detector

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Cyclo-olefin polymer (COP) has attracted much attention as substrate material for microfluidic devices because of its excellent optical properties, processability, and lower cost than glass materials. We have previously reported surface modification using water vapor plasma as a method of bonding COP substrates at low temperature. In this study, water feeding and bonding strength of this method was investigated using a microfluidic device equipped with fluid leak detectors. Water was fed by capillary flow in microchannels bonded at room temperature. Water leak was visually detected by the detectors, using an optical microscope. The withstanding pressure was 200 kPa or higher.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.-G. Niculescu, C. Chircov, A.C. Bîrča, A.M. Grumezescu, Int. J. Mol. Sci. 22, 2011 (2021). https://doi.org/10.3390/ijms22042011

    Article  CAS  Google Scholar 

  2. N.S. Ha, M. de Raad, L.Z. Han, A. Golini, C.J. Petzold, T.R. Northen, RSC Chem. Biol. 2, 1331 (2021). https://doi.org/10.1039/D1CB00112D

    Article  CAS  Google Scholar 

  3. T.S. Kaminski, P. Garstecki, Chem. Soc. Rev. 46, 6210–6226 (2017). https://doi.org/10.1039/C5CS00717H

    Article  CAS  Google Scholar 

  4. G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, M. Hoorfar, Sensors 15(12), 30011–30031 (2015). https://doi.org/10.3390/s151229783

    Article  CAS  Google Scholar 

  5. A.R. Perestrelo, A.C.P. Águas, A. Rainer, G. Forte, Sensors 15(12), 31142–31170 (2015). https://doi.org/10.3390/s151229848

    Article  Google Scholar 

  6. S. Funano, N. Ota, A. Sato, Y. Tanaka, Chem. Commun. 53, 11193 (2017). https://doi.org/10.1039/C7CC04744D

    Article  CAS  Google Scholar 

  7. S. Funano, N. Ota, Y. Tanaka, Lab Chip 21, 2244 (2021). https://doi.org/10.1039/D1LC00058F

    Article  CAS  Google Scholar 

  8. K. Kamei, Y. Kato, Y. Hirai, S. Ito, J. Satoh, A. Oka, T. Tsuchiya, Y. Chenad, O. Tabata, RSC Adv. 7, 36777 (2017). https://doi.org/10.1039/C7RA07716E

    Article  CAS  Google Scholar 

  9. J. Wu, Y. Hirai, K. Kamei, T. Tsuchiya, O. Tabata, I.E.E.J. Trans, Sens. Micromach. 139(7), 209–216 (2019). https://doi.org/10.1002/ecj.12210

    Article  Google Scholar 

  10. T.N.A. Vo, P.-C. Chen, Sens. Actuator A 334, 113330 (2022). https://doi.org/10.1016/j.sna.2021.113330

    Article  CAS  Google Scholar 

  11. Y. Taniguchi, Y.J. Kim, M. Hagioi, Y. Taguchi, H. Sugimura, J. Surf. Fin. Soc. Jpn 65, 234–239 (2014). https://doi.org/10.4139/sfj.65.234. (in Japanese)

    Article  CAS  Google Scholar 

  12. H. Kumon, S. Sakuma, S. Nakamura, H. Maruyama, K. Eto, F. Arai, Micromachines 12, 1253 (2021). https://doi.org/10.3390/mi12101253

    Article  Google Scholar 

  13. C.-W. Tsao, D.L. DeVoe, Microfluid. Nanofluid. 6, 1–16 (2009). https://doi.org/10.1007/s10404-008-0361-x

    Article  CAS  Google Scholar 

  14. J. Li, C. Liang, H. Zhang, C. Liu, Micro–Nano Lett. 12(2), 90–94 (2017). https://doi.org/10.1049/mnl.2016.0478

    Article  CAS  Google Scholar 

  15. K. Giri, C.-W. Tsao, Micromachines 13, 486 (2022). https://doi.org/10.3390/mi13030486

    Article  CAS  Google Scholar 

  16. Y. Luo, Z. Zhang, X. Wang, Y. Zheng, Microelectron. Eng. 87, 2429–2436 (2010). https://doi.org/10.1016/j.mee.2010.04.020

    Article  CAS  Google Scholar 

  17. A.M.D. Wan, A. Sadri, E.W.K. Young, Lab Chip 15, 3785–3792 (2015). https://doi.org/10.1039/C5LC00729A

    Article  CAS  Google Scholar 

  18. H. Shinohara, J. Mizuno, S. Shoji, Sens. Actuator A165, 124–131 (2011). https://doi.org/10.1016/j.sna.2010.04.006

    Article  CAS  Google Scholar 

  19. H. Terai, R. Funahashi, M. Kakuta, Trans. Soc. Chem. Micro–Nano Syst. 35, 47 (2017). (in Japanese)

    Google Scholar 

  20. H. Terai, R. Funahashi, T. Hashimoto, M. Kakuta, Electr. Eng. Jpn. 205, 48–56 (2018). https://doi.org/10.1002/eej.23164

    Article  Google Scholar 

  21. M. Yousfi, M.D. Benabdessadok, J. Appl. Phys. 80(12), 6619–6630 (1996). https://doi.org/10.1063/1.363785

    Article  CAS  Google Scholar 

  22. B.C. Garrett, D.A. Dixon, D.M. Camaioni et al., Chem. Rev. 105, 355–389 (2005). https://doi.org/10.1021/cr030453x

    Article  CAS  Google Scholar 

  23. Zeon Corp., ZEONEX® 690R Typical Properties (Zeon Corp.). https://www.zeonex.com/downloads/datasheets/pharmaceuticals/ZEONEX_690R.pdf. Accessed 18 April 2022

  24. A.K. Au, H. Lai, B.R. Utela, A. Folch, Micromachines 2, 179–220 (2011). https://doi.org/10.3390/mi2020179

    Article  Google Scholar 

  25. D.J. Laser, J.G. Santiago, J. Micromech. Microeng. 14, R35–R64 (2004). https://doi.org/10.1088/0960-1317/14/6/R01

    Article  Google Scholar 

  26. Q.Y. Tong, U. Gösele, J. Electrochem. Soc. 143, 1773–1779 (1996). https://doi.org/10.1149/1.1836715

    Article  CAS  Google Scholar 

  27. J. Xu, C. Wang, T. Wang, Y. Wang, Q. Kang, Y. Liu, Y. Tian, RSC Adv. 8, 11528–11535 (2018). https://doi.org/10.1039/C7RA13095C

    Article  CAS  Google Scholar 

  28. Zeon Corp., ZEONEX® Optics. Zeon Corp. https://www.zeonex.com/optics.aspx.html. Accessed 25 Aug 2022

Download references

Acknowledgments

A part of this study was supported by Kyoto University Nano Technology Hub. We would like to thank all the technical supporters for their guidance on how to use the equipment and the processing conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Tsukamoto.

Ethics declarations

Conflict of interest

We declare that there are no conflicts of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, M., Terai, H., Tsumaya, M. et al. Water vapor plasma-assisted low-temperature bonding of cyclo-olefin polymer for microchannel with integrated leak detector. MRS Advances 7, 905–910 (2022). https://doi.org/10.1557/s43580-022-00346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00346-8

Navigation