Skip to main content

Advertisement

Log in

Structure and properties of electrospray printed polymeric films

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Electrospray printing is a low-cost additive manufacturing technique that uses a high-electric potential to generate a spray of charged, solvent encapsulated solute particles. The solvent rapidly evaporates in-flight, depositing the dry solute material onto a target surface. Over time, the material aggregates to create thin, continuous films. Here, we report on the printing of polymeric (polyimide) films onto two target substrates: flat silicon wafers and industry-standard bond wires and pads. Unlike other spray-coating processes, electrospray is driven by the electric field, and the emitted droplets/particles are guided to the target surface by electric field lines. This enables the coating to wrap around complex geometries to deliver material to non-line-of-sight surfaces. The films showed high conformality around the complex geometries of the bond packages. The printed coatings also exhibited good dielectric strength (up to 142 V/µm), increased hydrophobicity (112° ± 9°), and corrosion resistance improvement up to four times.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Mizukoshi, H. Matsumoto, M. Minagawa, A. Tanioka, Control over wettability of textured surfaces by electrospray deposition. J. Appl. Polym. Sci. 103(6), 3811–3817 (2007). https://doi.org/10.1002/app.25191

    Article  Google Scholar 

  2. E. Burkarter, C.K. Saul, F. Thomazi, N.C. Cruz, L.S. Roman, W.H. Schreiner, Superhydrophobic electrosprayed PTFE. Surf. Coat. Technol. 202(1), 194–198 (2007). https://doi.org/10.1016/j.surfcoat.2007.05.012

    Article  Google Scholar 

  3. Y. Jiang et al., All electrospray printed perovskite solar cells. Nano Energy 53, 440–448 (2018). https://doi.org/10.1016/j.nanoen.2018.08.062

    Article  Google Scholar 

  4. H. Liu et al., Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer (Guildf) 163, 106–114 (2019). https://doi.org/10.1016/j.polymer.2018.12.045

    Article  Google Scholar 

  5. P. Ma et al., A review on high temperature resistant polyimide films: heterocyclic structures and nanocomposites. Compos. Commun. 16, 84–93 (2019). https://doi.org/10.1016/j.coco.2019.08.011

    Article  Google Scholar 

  6. P. Lv, Z. Dong, X. Dai, H. Wang, X. Qiu, Synthesis and properties of ultralow dielectric porous polyimide films containing adamantane. J. Polym. Sci. A: Polym. Chem. 56(5), 549–559 (2018). https://doi.org/10.1002/pola.28928

    Article  Google Scholar 

  7. H. Wu et al., Magnetron-sputtered fluorocarbon polymeric film on magnesium for corrosion protection. Surf. Coat. Technol. 352, 437–444 (2018). https://doi.org/10.1016/J.SURFCOAT.2018.08.043

    Article  Google Scholar 

  8. M.E. Alf et al., Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22(18), 1993–2027 (2009). https://doi.org/10.1002/adma.200902765

    Article  Google Scholar 

  9. N. Chen, D. Han Kim, P. Kovacik, H. Sojoudi, M. Wang, K.K. Gleason, Polymer thin films and surface modification by chemical vapor deposition: recent progress. Annu. Rev. Chem. Biomol. Eng. 7, 373–393 (2016). https://doi.org/10.1146/annurev-chembioeng-080615-033524

    Article  Google Scholar 

  10. A.M. Coclite et al., 25th Anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. 25(38), 5392–5423 (2013). https://doi.org/10.1002/adma.201301878

    Article  Google Scholar 

  11. Y. Zhu, P.R. Chiarot, Structure of nanoparticle aggregate films built using pulsed-mode electrospray atomization. J. Mater. Sci. 54(8), 6122–6139 (2019). https://doi.org/10.1007/s10853-019-03349-3

    Article  Google Scholar 

  12. H. Hu, J.P. Singer, C.O. Osuji, Morphology development in thin films of a lamellar block copolymer deposited by electrospray. Macromolecules 47(16), 5703–5710 (2014). https://doi.org/10.1021/ma500376n

    Article  Google Scholar 

  13. J. Tang, A. Gomez, Control of the mesoporous structure of dye-sensitized solar cells with electrospray deposition. J. Mater. Chem. A 3(15), 7830–7839 (2015). https://doi.org/10.1039/C5TA00288E

    Article  Google Scholar 

  14. J.L. Castillo, S. Martin, D. Rodriguez-Perez, F.J. Higuera, P.L. Garcia-Ybarra, Nanostructured porous coatings via electrospray atomization and deposition of nanoparticle suspensions. J. Aerosol Sci. (2018). https://doi.org/10.1016/j.jaerosci.2018.03.004

    Article  Google Scholar 

  15. J.Y. Park, K.O. Oh, J.C. Won, H. Han, H.M. Jung, Y.S. Kim, Facile fabrication of superhydrophobic coatings with polyimide particles using a reactive electrospraying process. J. Mater. Chem. 22(31), 16005 (2012). https://doi.org/10.1039/c2jm32210b

    Article  Google Scholar 

  16. A.M. Gañán-Calvo, J.M. López-Herrera, M.A. Herrada, A. Ramos, J.M. Montanero, Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J. Aerosol Sci. 125, 32–56 (2018). https://doi.org/10.1016/J.JAEROSCI.2018.05.002

    Article  Google Scholar 

  17. A. Tycova, J. Prikryl, A. Kotzianova, V. Datinska, V. Velebny, F. Foret, Electrospray: more than just an ionization source. Electrophoresis 42(1–2), 103–121 (2021). https://doi.org/10.1002/elps.202000191

    Article  Google Scholar 

  18. A. Jaworek, A.T. Sobczyk, A. Krupa, Electrospray application to powder production and surface coating. J. Aerosol Sci. 125, 57–92 (2018). https://doi.org/10.1016/J.JAEROSCI.2018.04.006

    Article  Google Scholar 

  19. I.B. Rietveld, K. Kobayashi, H. Yamada, K. Matsushige, Morphology control of poly(vinylidene fluoride) thin film made with electrospray. J. Colloid Interface Sci. 298(2), 639–651 (2006). https://doi.org/10.1016/J.JCIS.2005.12.028

    Article  Google Scholar 

  20. B.J. Kingsley, E.E. Pawliczak, T.R. Hurley, P.R. Chiarot, Electrospray printing of polyimide films using passive material focusing. ACS Appl. Polym. Mater. 3(12), 6274–6284 (2021). https://doi.org/10.1021/acsapm.1c01073

    Article  Google Scholar 

  21. M. Khalilur Rahman, T. Huy Phung, S. Oh, S. Hyun Kim, T. Nga Ng, K.-S. Kwon, High-efficiency electrospray deposition method for nonconductive substrates: applications of superhydrophobic coatings. ACS Appl. Mater. Interfaces 13, 18227–18236 (2021). https://doi.org/10.1021/acsami.0c22867

    Article  Google Scholar 

  22. E. Bodnár, J. Rosell-Llompart, Growth dynamics of granular films produced by electrospray. J. Colloid Interface Sci. 407, 536–545 (2013). https://doi.org/10.1016/j.jcis.2013.06.013

    Article  Google Scholar 

  23. R.A. Green-Warren et al., Determining the self-limiting electrospray deposition compositional limits for mechanically tunable polymer composites. ACS Appl. Polym. Mater. (2022). https://doi.org/10.1021/acsapm.2c00106

    Article  Google Scholar 

  24. D.A. Kovacevich et al., Self-limiting electrospray deposition for the surface modification of additively manufactured parts. ACS Appl. Mater. Interfaces 12(18), 20901–20911 (2020). https://doi.org/10.1021/acsami.9b23544

    Article  Google Scholar 

  25. L. Lei et al., Obtaining thickness-limited electrospray deposition for 3D coating. ACS Appl. Mater. Interfaces 10(13), 11175–11188 (2018). https://doi.org/10.1021/acsami.7b19812

    Article  Google Scholar 

  26. Y. Zhu, P.R. Chiarot, Surface charge accumulation and decay in electrospray printing. J. Phys. D: Appl. Phys. (2021). https://doi.org/10.1088/1361-6463/ABC449

    Article  Google Scholar 

  27. B.J. Kingsley, E.E. Pawliczak, T.R. Hurley, P.R. Chiarot, Electrospray printing of polyimide films for electronics packaging applications, in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC) (2022), pp. 1906–1913. https://doi.org/10.1109/ECTC51906.2022.00299

  28. S. Diaham, S. Zelmat, M.-L. Locatelli, S. Dinculescu, M. Decup, T. Lebey, Dielectric breakdown of polyimide films: area, thickness and temperature dependence. IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010). https://doi.org/10.1109/TDEI.2010.5411997

    Article  Google Scholar 

  29. DuPontTM, DuPontTM Kapton® summary of properties (2021)

  30. H. Kizil, M.O. Pehlivaner, L. Trabzon, Surface plasma characterization of polyimide films for flexible electronics. Adv. Mater. Res. 970, 132–135 (2014). https://doi.org/10.4028/www.scientific.net/AMR.970.132

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Semiconductor Research Corporation (SRC). Our thanks to our industry mentors Yasmine Yan (TI), Sean Chang (TI), and Varughese Mathew (NXP) for their outstanding support and guidance. Our thanks to the Analytical and Diagnostics Laboratory at SUNY Binghamton. PRC acknowledges the financial support of the National Science Foundation (Award #1554038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma E. Pawliczak.

Ethics declarations

Conflict of interest

There is no conflict of interest in this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawliczak, E.E., Kingsley, B.J. & Chiarot, P.R. Structure and properties of electrospray printed polymeric films. MRS Advances 7, 635–640 (2022). https://doi.org/10.1557/s43580-022-00340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00340-0

Navigation