Skip to main content
Log in

Material design for TiZrHfNbTaBx: A boundary material of refractory high-entropy alloys and ceramics

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The refractory high-entropy ceramics, TiZrHfNbTaBx (x = 0, 0.1, 1, 10), which vary from high-entropy alloys to high-entropy ceramics depending on the B-content, were fabricated using the arc-melting method. TiZrHfNbTa (x = 0), TiZrHfNbTaBx (x = 0–1), and (TiZrHfNbTa)B2 (x = 10) showed BCC, BCC with MB (M = Ti, Zr, Hf, Nb, Ta), and MB2 structures, respectively. The Vickers hardness and Young’s modulus of these materials increased with an increasing B-content because these ceramic properties are superior to those of metals. The weight gain during oxidation, measured using thermogravimetric analysis, revealed that the highest and lowest weight gains were observed for TiZrHfNbTaB and (TiZrHfNbTa)B2, respectively. Their weight gain depends on their crystal structures rather than their B-contents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, J. Am. Ceram. Soc. (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x

    Article  Google Scholar 

  2. R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2601-0

    Article  Google Scholar 

  3. S.-Q. Guo, J. Eur. Ceram. Soc. (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.008

    Article  Google Scholar 

  4. M.M. Opeka, I.G. Talmy, J.A. Zaykoski, J. Mater. Sci. (2004). https://doi.org/10.1023/B:JMSC.0000041686.21788.77

    Article  Google Scholar 

  5. Y. Arai, R. Inoue, K. Goto, Y. Kogo, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.05.065

    Article  Google Scholar 

  6. W.G. Fahrenholtz, J. Am. Ceram. Soc. (2007). https://doi.org/10.1111/j.1551-2916.2006.01329.x

    Article  Google Scholar 

  7. Y. Kubota, H. Tanaka, Y. Arai, R. Inoue, Y. Kogo, K. Goto, J. Eur. Ceram. Soc. (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.034

    Article  Google Scholar 

  8. Y. Kubota, M. Yano, R. Inoue, Y. Kogo, K. Goto, J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.024

    Article  Google Scholar 

  9. D. Sciti, L. Silvestroni, J. Eur. Ceram. Soc. (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.032

    Article  Google Scholar 

  10. F. Monteverde, R. Savino, J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.201

    Article  Google Scholar 

  11. R. Inoue, Y. Arai, Y. Kubota, J. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.03.129

    Article  Google Scholar 

  12. R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.10.034

  13. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  14. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  15. C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. (2020). https://doi.org/10.1038/s41578-019-0170-8

    Article  Google Scholar 

  16. B. Ye, T. Wen, D. Liu, Y. Chu, J. Corr. Sci. (2019). https://doi.org/10.1016/j.corsci.2019.04.001

    Article  Google Scholar 

  17. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K.J. VecchioLuo, Sci. Rep. (2016). https://doi.org/10.1038/srep37946

    Article  Google Scholar 

  18. Y. Arai, M. Saito, A. Samizo, R. Inoue, K. Nishio, Y. Kogo, J. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.08.055

    Article  Google Scholar 

  19. AtomWork, https://crystdb.nims.go.jp/crystdb/search-materials. Accessed 23 April 2022

  20. R.R. Eleti, N. Stepanov, N. Yurchenko, D. Klimenko, S. Zherebtsov, J. Scr. Mater. (2021). https://doi.org/10.1016/j.scriptamat.2021.113927

    Article  Google Scholar 

  21. X. OuYang, F. Yin, J. Hu, Y. Liu, Z. Long, JPED (2017). https://doi.org/10.1007/s11669-017-0603-2

    Article  Google Scholar 

  22. H. Okamoto, JPED (2008). https://doi.org/10.1007/s11669-008-9400-2

    Article  Google Scholar 

  23. S. Okada, K. Kudou, I. Higashi, T. Lundström, J. Cryst. Growth (1993). https://doi.org/10.1016/S0022-0248(07)80109-6

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI: Grant-in-Aid for Research Activity Start-up (19K23496) and Grant-in-Aid for Early-Career Scientists (20K14613) by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT, Japan). Authors also would like to thank Prof. Ryuji Tamura (Tokyo University of Science) for material processing (fabrication of TiZrHfNbTaBx by arc-melting).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaro Arai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, Y., Saito, M. & Kogo, Y. Material design for TiZrHfNbTaBx: A boundary material of refractory high-entropy alloys and ceramics. MRS Advances 7, 848–852 (2022). https://doi.org/10.1557/s43580-022-00337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00337-9

Navigation