Skip to main content
Log in

Clarification of phase stability and oxidation mechanism for TiZrHfTaX (X = Ta, Cr) using thermodynamic calculation

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

TiZrHfNbX (X = Ta, Cr) alloys were prepared as refractory high-entropy alloys (RHEAs) using an arc-melting method to investigate the differences in their oxidation behavior. Thermogravimetric analysis (TGA) and isothermal oxidation at 1200 °C for 4 h revealed that the weight gain of TiZrHfNbCr is larger than that of TiZrHfNbTa, and the preferential oxidation of Hf and Zr occurs in TiZrHfNbCr. After oxidation, complex oxides with structures (Zr, Hf)6(Nb, Ta)2O17, Ti(Nb, Ta)2O7, and Cr(Nb, Ta)O2 were formed, and these complex oxides probably acted as barriers for oxygen diffusion during oxidation. To gain in-depth understanding about the role of these oxides during oxidation, the oxidation behavior of middle- and low-entropy alloys with higher (Ti, Zr, and Hf) and lower (Nb, Ta, and Cr) Gibbs free energies of oxidation was investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. R.C. Reed, The Superalloys (Cambridge University Press, Cambridge, 2006), pp.18–24

    Book  Google Scholar 

  2. D.B. Miracle, O.N. Senkov, Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  5. E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, L. Vitos, Int. J. Refract. Met. Hard Mater. (2014). https://doi.org/10.1016/J.IJRMHM.2014.07.009

    Article  Google Scholar 

  6. B. Gorr, S. Schellert, F. Müller, H.-J. Christ, A. Kauffmann, M. Heilmaier, Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202001047

    Article  Google Scholar 

  7. D.B. Miracle, M.H. Tsai, O.N. Senkov, V. Soni, R. Banerjee, Scr. Mater. (2020). https://doi.org/10.1016/J.SCRIPTAMAT.2020.06.048

    Article  Google Scholar 

  8. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics (2011). https://doi.org/10.1016/J.INTERMET.2011.01.004

    Article  Google Scholar 

  9. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics (2010). https://doi.org/10.1016/J.INTERMET.2010.05.014

    Article  Google Scholar 

  10. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, J. Mater. Res. (2018). https://doi.org/10.1557/jmr.2018.153

    Article  Google Scholar 

  11. E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. (2019). https://doi.org/10.1038/s41578-019-0121-4

    Article  Google Scholar 

  12. M.H. Tsai, J.W. Yeh (2014). https://doi.org/10.1080/21663831.2014.912690

  13. W. Martienssen, in Springer Handbook of Materials Data, 2nd edn. By H. Warlimont, W. Martienssen (Springer International Publishing, Cham, 2018), pp. 96–105

  14. T.M. Butler, K.J. Chaput, J.R. Dietrich, O.N. Senkov, J. Alloys Compd. (2017). https://doi.org/10.1016/J.JALLCOM.2017.09.164

    Article  Google Scholar 

  15. C.-H. Chang, M.S. Titus, J.-W. Yeh, Adv. Eng. Mater. (2018). https://doi.org/10.1002/adem.201700948

    Article  Google Scholar 

  16. Y. Arai, M. Saito, Y. Kogo (2021) MRS advances submitted

  17. AtomWork, https://crystdb.nims.go.jp/crystdb/search-materials. Accessed 23 Apr 2007

  18. J.C. Slater (2004). https://doi.org/10.1063/1.1725697

  19. M.C. Gao, P. Gao, J.A. Hawk, L. Ouyang, D.E. Alman, M. Widom, J. Mater. Res. (2017). https://doi.org/10.1557/jmr.2017.366

    Article  Google Scholar 

  20. M. Braic, V. Braic, A. Vladescu, C.N. Zoita, M. Balaceanu, Prog. Nat. Sci.: Mater. Int. (2014). https://doi.org/10.1016/j.pnsc.2014.06.001

    Article  Google Scholar 

  21. B. Ye, T. Wen, Y. Chu, J. Am. Ceram. Soc. (2020). https://doi.org/10.1111/jace.16725

    Article  Google Scholar 

  22. B. Ye, T. Wen, D. Liu, Y. Chu, Corros. Sci. (2019). https://doi.org/10.1016/j.corsci.2019.04.001

    Article  Google Scholar 

  23. NIST-JANAF, https://janaf.nist.gov/. Accessed 26 Jan 2022

  24. F. Gesmundo, F. Viani, Oxid. Met. (1986). https://doi.org/10.1007/BF01072908

    Article  Google Scholar 

  25. R. Guo, Z. Li, L. Li, Y. Liu, R. Zheng, C. Ma, J. Eur. Ceram. Soc. (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.036

    Article  Google Scholar 

  26. Y. Arai, M. Saito, A. Samizo, R. Inoue, K. Nishio, Y. Kogo, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.08.055

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. Ryuji Tamura (Tokyo University of Science) for material processing (arc-melting of HEAs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaro Arai.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komiya, Y., Haginiwa, D., Kogo, Y. et al. Clarification of phase stability and oxidation mechanism for TiZrHfTaX (X = Ta, Cr) using thermodynamic calculation. MRS Advances 7, 841–847 (2022). https://doi.org/10.1557/s43580-022-00336-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00336-w

Navigation