Skip to main content
Log in

Human osteoblast cells proliferation in biodegradable poly-3-hydroxybutyrate (PHB) scaffolds from a mutant Azotobacter vinelandii strain

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

An in vitro study of the viability of normal human osteoblasts (NHOst) cultured on poly (3-hydroxybutyrate), PHB, scaffolds was conducted. PHB was biosynthesized from a strain of Azotobacter vinelandii, and the NHOst were cultured on cast films and on electrospun membranes. The cell viability was investigated for up to 168 h and parallel studies were carried out on control (empty) wells. The cell concentration increased exponentially with time and after 168 h. The concentration was still increasing although at lower rate and the cell nuclei were still active. The osteoblast viability and morphology were both healthy in both type of scaffolds, and after 168 h. The viability was over 90% regardless of the scaffold morphology. This in vitro study utilizing PHB derived from A. vinelandii strains suggests that the scaffolds are a feasible alternative to bone tissue regeneration and warrants an in vivo study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.A.J. Verlinden, D.J. Hill, M.A. Kenward, C.D. Williams, I. Radecka, J. Appl. Microbiol. 102, 1437 (2007)

    Article  CAS  Google Scholar 

  2. C. Peña, S. López, A. García, G. Espín, A. Romo-Uribe, D. Segura, Ann. Microbiol. 64, 39 (2013)

    Article  Google Scholar 

  3. D. Plackett (ed.), Biopolymers—New materials for sustainable Films and Coatings. Cap. 4. Production, Chemistry and Properties of Polyhydroxyalkanoates (Wiley, New York, 2011), p. 75

    Google Scholar 

  4. L. Kaniuk, U. Stachewicz, A.C.S. Biomater, Sci. Eng. 7, 5339 (2021)

    CAS  Google Scholar 

  5. C. Peña, T. Castillo, A. Garcia, M. Millan, D. Segura, Microb. Biotechnol. 7, 278 (2014)

    Article  Google Scholar 

  6. X.J. Loh, S.H. Goh, J. Li, Biomaterials 28, 4113 (2007)

    Article  CAS  Google Scholar 

  7. X.J. Loh, W.C.D. Cheong, J. Li, Y. Ito, Soft Matter 5, 2937 (2009)

    Article  CAS  Google Scholar 

  8. M. Domínguez-Díaz, A. Meneses-Acosta, A. Romo-Uribe, C. Peña, D. Segura, G. Espin, Eur. Polym. J. 63, 101 (2015)

    Article  Google Scholar 

  9. Y.-L. Wu, H. Wang, Y.-K. Qiu, S.S. Liow, Z. Li, X.J. Loh, Adv. Healthcare Mater. 5, 2679 (2016)

    Article  CAS  Google Scholar 

  10. A. Romo-Uribe, A. Meneses-Acosta, M. Domínguez-Díaz, Mater. Sci. Eng. C 81, 236 (2017)

    Article  CAS  Google Scholar 

  11. Y.-W. Wang, Q. Wu, C.-Q. Chen, Biomaterials 25, 669 (2004)

    Article  Google Scholar 

  12. Y.-W. Wang, F. Yang, Q. Wua, Y.C. Cheng, P.H.F. Yu, J. Chen, G.-Q. Chen, Biomaterials 26, 755 (2005)

    Article  CAS  Google Scholar 

  13. P. Sangsanoh, S. Waleetorncheepsawat, O. Suwantong, P. Wutticharoenmongkol, O. Weeranantanapan, B. Chuenjitbuntaworn, P. Cheepsunthorn, P. Pavasant, P. Supaphol, Biomacromol 8, 1587 (2007)

    Article  CAS  Google Scholar 

  14. O. Suwantong, S. Waleetorncheepsawat, N. Sanchavanakit, P. Pavasant, P. Cheepsunthorn, T. Bunaprasert, P.I. Supaphol, J. Biol. Macromol. 40, 217 (2006)

    Article  Google Scholar 

  15. L. Medvecky, M. Giretova, R. Stulajterova, J. Mater. Sci.: Mater. Med. 25, 777 (2014)

    CAS  Google Scholar 

  16. G.G. Genchi, G. Ciofani, A. Polini, I. Liakos, D. Iandolo, A. Athanassiou, D. Pisignano, V. Mattoli, A. Menciassi, J. Tissue Eng. Reg. Med. (2012). https://doi.org/10.1002/term.1623

    Article  Google Scholar 

  17. J. Ramier, T. Bouderlique, O. Stoilova, N. Manolova, I. Rashkov, V. Langlois, E. Renard, P. Albanese, D. Grande, Mater. Sci. Eng. C-Mater. Biol. Appl. 38, 161 (2014)

    Article  CAS  Google Scholar 

  18. R.H. Mendonca, T. de Oliveira Meiga T, M.F. de Costa, R.M. de Silva-Moreira-Thiré, J. Appl. Polym. Sci. 129, 614 (2013)

  19. E. Korina, O. Stoilova, N. Manolova, I. Rashkov, Macromol. Biosci. 13, 707 (2013)

    Article  CAS  Google Scholar 

  20. A. Romo-Uribe, A. Flores, M. Dominguez-Diaz, Emerging Mater. Res. 8, 127 (2019)

    Article  Google Scholar 

  21. S. Sell, C. Barnes, M. Smith, M. McClure, P. Madurantakam, J. Grant, M. McManus, G. Bowlin, Polym. Int. 56, 1349 (2007)

    Article  CAS  Google Scholar 

  22. M. Bao, X. Lou, Q. Zhou, W. Dong, H. Yuan, Y. Zhang, A.C.S. Appl, Mater. Interfaces 6, 2611 (2014)

    Article  CAS  Google Scholar 

  23. A. Romo-Uribe, Electro-spun biomimetic scaffolds of biosinthesized Poly (β-hydroxybutyrate) from Azotobacter vinelandii strains. Cell viability and bone tissue engineering, in Materials for Biomedical Engineering, Hydrogels and Polymer-Based SCAFFOLDS. ed. by A.M. Holban, A.M. Grumezescu (Elsevier, Amsterdam, 2019)

    Google Scholar 

  24. Z. Chen, Y. Song, J. Zhang, W. Liu, J. Cui, H. Li, F. Chen, Mater. Sci. Eng. C 72, 341 (2017)

    Article  CAS  Google Scholar 

  25. M. Dominguez-Diaz, A. Meneses-Acosta, A. Romo-Uribe, MRS Symp. Proc. (2015). https://doi.org/10.1557/opl.2015.138

    Article  Google Scholar 

  26. M. Moffa, A. Polini, A.G. Sciancalepore, L. Persano, E.L. Mele, L.G. Passione, G. Potente, D. Pisignano, Soft Matter 9, 5529 (2013)

    Article  CAS  Google Scholar 

  27. W. Mattanavee, O. Suwantong, S. Puthong, T. Bunaprasert, V.P. Hoven, P. Supaphol, ACS Appl. Mater. Interfaces 1, 1076 (2009)

    Article  CAS  Google Scholar 

  28. X. Liu, J.M. Holzwarth, P.X. Ma, Macromol. Biosci. 12, 911 (2012)

    Article  CAS  Google Scholar 

  29. J.A. Killion, S. Kehoe, L.M. Geever, D.M. Devine, E. Sheehan, D. Boyd, C.L. Higginbotham, Mater. Sci. Eng. C 33, 4203 (2013)

    Article  CAS  Google Scholar 

  30. Q. Wang, M. Libera, Colloid Surf. B: Biointerfaces 118, 202 (2014)

    Article  CAS  Google Scholar 

  31. E. Gomez-Hernandez, H. Salgado-Lugo, D. Segura, A. Garcia, A. Diaz-Barrera, C. Peňa, Appl Biochem. Biotechnol. 193, 79 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Romo-Uribe.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

43580_2022_286_MOESM1_ESM.pdf

Supplementary file Supporting materials and methods: physical-chemical characterization, thermal analysis via TGA and DSC, morphology characterization by SEM, WAXD and optical microscopy, scaffolds fabrication, cell culturing and quantification; cell viability assessment (PDF). (PDF 687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romo-Uribe, A. Human osteoblast cells proliferation in biodegradable poly-3-hydroxybutyrate (PHB) scaffolds from a mutant Azotobacter vinelandii strain. MRS Advances 7, 508–514 (2022). https://doi.org/10.1557/s43580-022-00286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00286-3

Navigation