Skip to main content
Log in

Epitaxial growth of Zn1−xMgxO films on sapphire substrates via inverted Stranski-Krastanov mode using magnetron sputtering

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We have succeeded in epitaxial growth of high-quality Zn1−xMgxO films of x = 0.04–0.33 on 18%-lattice mismatched sapphire substrates using magnetron sputtering. The films have grown in inverted Stranski-Krastanov (inverted SK) mode, where a buffer layer consisting of three-dimensional islands initially forms and a relaxed two-dimensional layer subsequently grows on the buffer layer. The resultant films have flat surfaces with root-mean-square roughness of 0.43–0.75 nm and are of high-crystal qualities even for large Mg contents; the full widths at half maximum of (0002) x-ray rocking curves are 0.05° (x = 0.33) and 0.07° (x = 0.14). Furthermore, we observed that the optical absorption edge shifts continuously toward the shorter wavelength with increasing x, and the band gap has been tuned from 3.5 to 4.3 eV. These results show that the inverted SK mode is useful for fabricating high-quality Zn1−xMgxO films with wide-range tunability of band gaps.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010). https://doi.org/10.1063/1.3459139

    Article  CAS  Google Scholar 

  2. J.D. Hwang, H.C. Chiu, C.I. Jiang, IEEE Photonics Technol. Lett. 30, 1583–1586 (2018). https://doi.org/10.1109/LPT.2018.2863368

    Article  CAS  Google Scholar 

  3. G. Drewelow, A. Reed, C. Stone, K. Roh, Z.-T. Jiang, L.N.T. Truc, K. No, H. Park, S. Lee, Appl. Surf. Sci. 484, 990–998 (2019). https://doi.org/10.1016/j.apsusc.2019.04.079

    Article  CAS  Google Scholar 

  4. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72, 2466–2468 (1998). https://doi.org/10.1063/1.121384

    Article  CAS  Google Scholar 

  5. T. Takagi, H. Tanaka, S. Fujita, S. Fujita, Jpn. J. Appl. Phys. 42, L401–L403 (2003). https://doi.org/10.1143/JJAP.42.L401

    Article  CAS  Google Scholar 

  6. Y. Nishimoto, K. Nakahara, D. Takamizu, A. Sasaki, K. Tamura, S. Akasaka, H. Yuji, T. Fujii, T. Tanabe, H. Takasu, A. Tsukazaki, A. Ohtomo, T. Onuma, S.F. Chichibu, M. Kawasaki, Appl. Phys. Express. 1, 091202 (2008). https://doi.org/10.1143/APEX.1.091202

    Article  CAS  Google Scholar 

  7. H. Yuji, K. Nakahara, K. Tamura, S. Akasaka, Y. Nishimoto, D. Takamizu, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Jpn. J. Appl. Phys. 49, 071104 (2010). https://doi.org/10.1143/JJAP.49.071104

    Article  CAS  Google Scholar 

  8. P. Murkute, H. Ghadi, S. Sushama, S. Chakrabarti, Superlattices Microstruct. 156, 106977 (2021). https://doi.org/10.1016/j.spmi.2021.106977

    Article  CAS  Google Scholar 

  9. M. Fujita, M. Sasajima, Y. Deesirapipat, Y. Horikoshi, J. Cryst. Growth. 278, 293–298 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.022

    Article  CAS  Google Scholar 

  10. N. Itagaki, Y. Nakamura, R. Narishige, K. Takeda, K. Kamataki, K. Koga, M. Hori, M. Shiratani, Sci. Rep. 10, 4669 (2020). https://doi.org/10.1038/s41598-020-61596-w

    Article  CAS  Google Scholar 

  11. J. Tersoff, R.M. Tromp, Phys. Rev. Lett. 70, 2782–2785 (1993). https://doi.org/10.1103/PhysRevLett.70.2782

    Article  CAS  Google Scholar 

  12. F.M. Ross, J. Tersoff, R.M. Tromp, Phys. Rev. Lett. 80, 984–987 (1998). https://doi.org/10.1103/PhysRevLett.80.984

    Article  CAS  Google Scholar 

  13. R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E.M. Kaidashev, M. Lorenz, A. Rahm, H.C. Semmelhack, M. Grundmann, Appl. Phys. Lett. 82, 2260–2262 (2003). https://doi.org/10.1063/1.1565185

    Article  CAS  Google Scholar 

  14. J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884–7887 (1999). https://doi.org/10.1063/1.370601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP21H01372, JP21K18731, NTT collaborative research, Toyota Riken Scholar, and The Murata Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi Takahashi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, D., Yamashita, N., Yamashita, D. et al. Epitaxial growth of Zn1−xMgxO films on sapphire substrates via inverted Stranski-Krastanov mode using magnetron sputtering. MRS Advances 7, 415–419 (2022). https://doi.org/10.1557/s43580-022-00234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00234-1

Navigation