Skip to main content

Advertisement

Log in

Solar hydrothermal liquefaction: Effect of the operational parameters on the fuels

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Hydrothermal processing is a promising technology for being carried out at lower temperatures than pyrolysis and gasification. However, one concern is that HTP typically uses fossil-generated electricity for heating. Therefore, to reduce its environmental impact, concentrated solar energy has been proposed as a heat source. In the present work, hydrothermal liquefaction of agave bagasse was performed in a solar furnace of 25 kW. The experiments were carried out in a solar reactor specifically designed to work at maximum conditions of 220 bar and 500 °C. The experiments were carried out with different operational parameters of temperature (150 and 300 °C), initial pressure (10, 30 and 50 bar), residence time (0 and 60 min), biomass ratio (10 wt%), and average heating rate of 2 °C/min. The main results indicate that acetone improves the oil recovery up to 13% compared to dichloromethane and higher yields of oil were found at initial pressure of 10 bar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. Akhtar, N.A.S. Amin, A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 15(3), 1615–1624 (2011)

    Article  CAS  Google Scholar 

  2. K.Q. Tran, Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass–the need to develop a plug-flow reactor. Biores. Technol. 213, 327–332 (2016)

    Article  CAS  Google Scholar 

  3. M. Balat, Mechanisms of thermochemical biomass conversion processes. Part 3: reactions of liquefaction. Energy Sources Part A 30(7), 649–659 (2008)

    Article  CAS  Google Scholar 

  4. L. Zhang, C.C. Xu, P. Champagne, Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 51(5), 969–982 (2010)

    Article  CAS  Google Scholar 

  5. Y. Guo, T. Yeh, W. Song, D. Xu, S. Wang, A review of bio-oil production from hydrothermal liquefaction of algae. Renew. Sustain. Energy Rev. 48, 776–790 (2015)

    Article  CAS  Google Scholar 

  6. E. Gasafi, M.Y. Reinecke, A. Kruse, L. Schebek, Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass Bioenergy 32(12), 1085–1096 (2008)

    Article  CAS  Google Scholar 

  7. A. Ayala-Cortés, P. Arcelus-Arrillaga, M. Millan, C.A. Arancibia-Bulnes, P.J. Valadés-Pelayo, H.I. Villafán-Vidales, Solar integrated hydrothermal processes: a review. Renew. Sustain. Energy Rev. 139, 110575 (2020)

    Article  Google Scholar 

  8. M. Pearce, M. Shemfe, C. Sansom, Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae. Appl. Energy 166, 19–26 (2016)

    Article  Google Scholar 

  9. H. Almond, X. Tonnellier, C. Sansom, M. Pearce, N. Sengar, The design and modification of a parabolic trough system for the hydrothermal liquefaction of waste, in AIP Conference Proceedings, vol. 2126, no. 1, p. 120001 (AIP Publishing LLC, 2019)

  10. M. Pearce, X. Tonnellier, N. Sengar, C. Sansom, Fuel from hydrothermal liquefaction of waste in solar parabolic troughs, in AIP Conference Proceedings, vol. 2126, no. 1, p. 180015 (AIP Publishing LLC, 2019)

  11. G. Ischia, M. Orlandi, M.A. Fendrich, M. Bettonte, F. Merzari, A. Miotello, L. Fiori, Realization of a solar hydrothermal carbonization reactor: A zero-energy technology for waste biomass valorization. J. Environ. Manag. 259, 110067 (2020)

    Article  CAS  Google Scholar 

  12. C. Xiao, Q. Liao, Q. Fu, Y. Huang, H. Chen, H. Zhang et al., A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass. Appl. Energy 236, 1011–1018 (2019)

    Article  CAS  Google Scholar 

  13. A. Ayala-Cortés, D.R. Lobato-Peralta, C.E. Arreola-Ramos, D.C. Martínez-Casillas, D.E. Pacheco-Catalán, A.K. Cuentas-Gallegos et al., Exploring the influence of solar pyrolysis operation parameters on characteristics of carbon materials. J. Anal. Appl. Pyrol. 140, 290–298 (2019)

    Article  Google Scholar 

  14. J. Watson, J. Lu, R. de Souza, B. Si, Y. Zhang, Z. Liu, Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency. Energy 167, 189–197 (2019)

    Article  CAS  Google Scholar 

  15. J. Lu, Z. Liu, Y. Zhang, P.E. Savage, 110th Anniversary: influence of solvents on biocrude from hydrothermal liquefaction of soybean oil, soy protein, cellulose, xylose, and lignin, and their quinary mixture. Ind. Eng. Chem. Res. 58(31), 13971–13976 (2019)

    Article  CAS  Google Scholar 

  16. B. De Caprariis, P. De Filippis, A. Petrullo, M. Scarsella, Hydrothermal liquefaction of biomass: influence of temperature and biomass composition on the bio-oil production. Fuel 208, 618–625 (2017)

    Article  Google Scholar 

  17. Y. Xue, H. Chen, W. Zhao, C. Yang, P. Ma, S. Han, A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. Int. J. Energy Res. 40(7), 865–877 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the support of R. Morán-Elvira for the operation of SEM, M. L. Ramón-García and P.E. Altuzar-Coello for XRD measurements, M. Baas López for CHONS analysis, and J.J. Quiñones Aguilar for solar furnace maintenance. The authors acknowledge the financial support received from Fondo Sectorial CONACYT-SENERSustentabilidad Energética through Grant 207450, “Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol)”, within strategic project No. 120 “Tecnología solar para obtención de productos con valor agregado mediante procesamiento hidrotermal”, and DGAPA PAPIIT-UNAM IN110118 ``Producción de bioaceites a través del uso de microalgas y energía solar concentrada". H.I. Villafán-Vidales acknowledges the financial support of DGAPA-UNAM through the PASPA program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ayala-Cortés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala-Cortés, A., Arcelus-Arrillaga, P., Pacheco-Catalán, D.E. et al. Solar hydrothermal liquefaction: Effect of the operational parameters on the fuels. MRS Advances 7, 24–27 (2022). https://doi.org/10.1557/s43580-021-00204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00204-z

Keywords

Navigation