Skip to main content
Log in

Activated carbon aging processes characterization by Raman spectroscopy

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Activated carbon is typically being used as an adsorbent material for various hazardous materials. It is common to impregnate the carbon with metal oxides in order to improve its adsorbing capabilities to polar hydrophilic compounds. Exposure of activated carbon to humidity causes water adsorption that leads to aging of the carbon. The aging process reduces the chemisorption capacity of the activated carbon, thus deteriorating its adsorption properties. In this research, the effect of aging on activated carbon was studied by non-destructive Raman spectroscopy, which enables chemical characterization of packed AC samples. Accelerated aging was achieved by controlling thermal oxidation of carbonaceous materials. The aging process of the activated carbon which includes carbon oxidation, as well as metal ions migrations was studied using Raman spectroscopy utilizing mainly D and G Raman band shifts, as well as energy dispersive spectroscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article and its supplementary information file.

References

  1. H. Jüntgen, Carbon 15, 273–283 (1977). https://doi.org/10.1016/0008-6223(77)90030-6

    Article  Google Scholar 

  2. O. Ioannidou, A. Zabaniotou, Renew. Sustain. Energy Rev. (2007). https://doi.org/10.1016/j.rser.2006.03.013

    Article  Google Scholar 

  3. L.-C. Wu et al., J. Air Waste Manage Assoc. 57, 1461–1468 (2007). https://doi.org/10.3155/1047-3289.57.12.1461

    Article  CAS  Google Scholar 

  4. C. Petit et al., J. Phys. Chem. C 111, 12705–12714 (2007). https://doi.org/10.1021/jp072066n

    Article  CAS  Google Scholar 

  5. H. Fortier et al., J. Colloid Interface Sci. 320, 423–435 (2008). https://doi.org/10.1016/j.jcis.2008.01.018

    Article  CAS  Google Scholar 

  6. H.-L. Chiang et al., Carbon 37, 1919–1928 (1999). https://doi.org/10.1016/S0008-6223(99)00097-4

    Article  CAS  Google Scholar 

  7. V. Piergrossi et al., Int. J. Environ. Sci. Technol. 16, 1227–1238 (2019). https://doi.org/10.1007/s13762-018-1756-1

    Article  CAS  Google Scholar 

  8. H.F. Stoeckli, Carbon 28, 1–6 (1990). https://doi.org/10.1016/0008-6223(90)90086-E

    Article  CAS  Google Scholar 

  9. F. Rodríguez-Reinoso, M. Molina-Sabio, Carbon 30, 1111–1118 (1992). https://doi.org/10.1016/0008-6223(92)90143-K

    Article  Google Scholar 

  10. S. Zhao et al., J. Clean Prod. 87, 856–861 (2015). https://doi.org/10.1016/j.jclepro.2014.10.001

    Article  CAS  Google Scholar 

  11. T. Amitay-Rosen et al., J. Occup. Environ. Hyg. 12, 130–137 (2015). https://doi.org/10.1080/15459624.2014.955180

    Article  CAS  Google Scholar 

  12. S.S. Barton et al., Carbon 34, 975–982 (1996). https://doi.org/10.1016/0008-6223(96)00059-0

    Article  CAS  Google Scholar 

  13. S. Katz et al., Mater. Res. Soc. (2016). https://doi.org/10.1557/adv.2015.55

    Article  Google Scholar 

  14. D.S. Knight, W.B. White, J. Mater. Res. 4, 385–393 (1989). https://doi.org/10.1557/JMR.1989.0385

    Article  CAS  Google Scholar 

  15. A. Sadezky et al., Carbon 43, 1731–1742 (2005). https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  16. N. Shimodaira, A. Masui, J. Appl. Phys. 92, 902–909 (2002). https://doi.org/10.1063/1.1487434

    Article  CAS  Google Scholar 

  17. N. Ferralis et al., Carbon 108, 440–449 (2016). https://doi.org/10.1016/j.carbon.2016.07.039

    Article  CAS  Google Scholar 

  18. M.A. Tamor, W.C. Vassell, J. Appl. Phys. 76, 3823 (1994). https://doi.org/10.1063/1.357385

    Article  CAS  Google Scholar 

  19. Y. Xie et al., Appl. Sci. 9(21), 4699 (2019). https://doi.org/10.3390/app9214699

    Article  CAS  Google Scholar 

  20. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  21. G. Pillet et al., J. Raman Spectrosc. 50, 1861–1866 (2019). https://doi.org/10.1002/jrs.5723

    Article  CAS  Google Scholar 

  22. A. Ghosh et al., Vib. Spectrosc. 98, 111–118 (2018). https://doi.org/10.1016/j.vibspec.2018.07.014

    Article  CAS  Google Scholar 

  23. E. Samuel et al., J. Alloys Compd. 741, 781–791 (2018). https://doi.org/10.1016/j.jallcom.2017.12.320

    Article  CAS  Google Scholar 

  24. R. Taziwa et al., J. Nanosci. Nanotechnol. Res. 1, 1–3 (2017)

    Google Scholar 

  25. R. Cuscó et al., Phys. Rev. B 75, 165202 (2007). https://doi.org/10.1103/PhysRevB.75.165202

    Article  CAS  Google Scholar 

  26. W. Han et al., Appl. Surf. Sci. 299, 12–18 (2014). https://doi.org/10.1016/j.apsusc.2014.01.170

    Article  CAS  Google Scholar 

  27. K. Kavkler, A. Demšar, Spectrochim. Acta Part A 78, 740–746 (2011). https://doi.org/10.1016/j.saa.2010.12.006

    Article  CAS  Google Scholar 

  28. Ü. Özgür et al., J. Appl. Phys. 98, 1–103 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  29. J. Schwan et al., J. Appl. Phys. 80, 440–447 (1996). https://doi.org/10.1063/1.362745

    Article  CAS  Google Scholar 

  30. F. Li, J.S. Lannin, Appl. Phys. Lett. 61, 2116–2118 (1992). https://doi.org/10.1063/1.108324

    Article  CAS  Google Scholar 

  31. H.K. Yadav et al., Appl. Phys. Lett. 100, 051906 (2012). https://doi.org/10.1063/1.3681144

    Article  CAS  Google Scholar 

  32. C.S. Casari et al., Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.77.195444

    Article  Google Scholar 

  33. U.I. Alivov, Y.I. Liu, J. Appl. Phys. 98, 41301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  34. F.J. Manjon et al., Artic. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1856222

    Article  Google Scholar 

  35. P. Florek et al., Materials (Basel) 14, 1835 (2021). https://doi.org/10.3390/ma14081835

    Article  CAS  Google Scholar 

  36. H. Vašková, V. Křesálek, Int. J. Math. Models Methods Appl. Sci. 5(7), 1197–1204 (2011)

    Google Scholar 

  37. H.E. Van Wart et al., J. Phys. Chem. 80, 625–630 (1976). https://doi.org/10.1021/j100547a014

    Article  Google Scholar 

  38. O. Francioso et al., J. Mol. Struct. 994, 155–162 (2011). https://doi.org/10.1016/j.molstruc.2011.03.011

    Article  CAS  Google Scholar 

  39. C. Hess, Chem. Soc. Rev. (2021). https://doi.org/10.1039/d0cs01059f

    Article  Google Scholar 

  40. A. Ferrari, J. Robertson, Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  41. S. Botti et al., Raman Spectrosc. (2018). https://doi.org/10.5772/intechopen.74065

    Article  Google Scholar 

  42. Y. Wang et al., Chem. Mater. 2, 557–563 (1990). https://doi.org/10.1021/cm00011a018

    Article  CAS  Google Scholar 

  43. J.T. Kloprogge et al., J. Raman Spectrosc. 35, 967–974 (2004). https://doi.org/10.1002/jrs.1244

    Article  CAS  Google Scholar 

  44. ImageJ, (n.d.). https://imagej.nih.gov/ij/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Katz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

S. Katz—On Sabbatical leave from Soreq NRC, Yavne 81800, Israel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 564 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, S., Pevzner, A., Shepelev, V. et al. Activated carbon aging processes characterization by Raman spectroscopy. MRS Advances 7, 245–248 (2022). https://doi.org/10.1557/s43580-021-00189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00189-9

Navigation