Skip to main content
Log in

X-ray diffraction and FTIR analysis on effect of time and temperature layered double hydroxides synthesis

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) are materials of great scientific interest. They are used in numerous fields, such as in the pharmaceutical industry, environmental remediation, polymers, catalysis, among others, due to their anion exchange capacity. In this investigation, nine batches of LDHs were successfully produced by co-precipitation at low supersaturation. pH was maintained constant, and the aging stages of LDH were carried out at different temperatures: namely 30, 50, and 70 °C and times of 12, 18, and 24 h. The samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques in order to evaluate the crystallinity and the presence of impurities in the materials obtained. The experimental results revealed that the structural characteristics of LDH (such as lattice parameters and the interlayer spacing) were not affected by temperature and/or time parameters in the aging synthesis step. The crystallinity and crystallite size of the LDHs increase with rising aging temperature and time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K.J. Al-Salihi, W.R. Alfatlawi, Mater. Sci. Eng. (2021). https://doi.org/10.1088/1757

    Article  Google Scholar 

  2. K. Hu, Y. Wang, D. Tang, Q. Wang, H. Li, Y. Huang, Z. Huang, K. Wu, Materials (2019). https://doi.org/10.3390/ma12050801

    Article  Google Scholar 

  3. R.M.M. Santos, V. Briois, L. Martins, C.V. Santilli, A.C.S. Appl, Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c04541

    Article  Google Scholar 

  4. M. Haraketi, K. Hosni, E. Srasra, Surf. Eng. Appl. Electrochem. (2017). https://doi.org/10.3103/S106837551704007X

    Article  Google Scholar 

  5. K.M. Bester, W.W. Focke, F.J.W. Labuschagné, A.I.P. Conf, Proc. (2019). https://doi.org/10.1063/1.5084828

    Article  Google Scholar 

  6. J.E. Aguilar, B.T.C. Bezerra, B.D.M. Braga, P.D.D.S. Lima, R.E.F.Q. Nogueira, S. Mardônio, Sep. Sci. Technol. (2013). https://doi.org/10.1080/01496395.2013.804837

    Article  Google Scholar 

  7. S. Jamil, A.R. Alvi, S.R. Khan, Prog. Chem. (2019). https://doi.org/10.7536/PC180505

    Article  Google Scholar 

  8. H. Panda, R. Srivastava, D. Bahadur, Bull. Mater. Sci. (2011). https://doi.org/10.1007/s12034-011-0364-1

    Article  Google Scholar 

  9. W. Budhysutanto, H. Kramer, D. Van Agterveld, A. Talma, P. Jansens, Chem. Eng. Res. Des. 88, 1445–1449 (2010)

    Article  CAS  Google Scholar 

  10. Y. Guo, X. Cui, Y. Li, Q. Zhang, H. Wang, J. Nanosci. Nanotechnol. (2016). https://doi.org/10.1166/jnn.2016.11725

    Article  Google Scholar 

  11. M.V. Bukhtiyarova, J. Solid State Chem. (2018). https://doi.org/10.1016/j.jssc.2018.10.018

    Article  Google Scholar 

  12. A.F. Badri, R. Mohadi, M. Mardiyanto, A. Lesbani, Glob. NEST J. (2021). https://doi.org/10.30955/gnj.003443

    Article  Google Scholar 

  13. N.K. Julianti, T.K. Wardani, I. Gunardi, A. Roesyadi, J. Pure Appl. Chem. Res. (2017). https://doi.org/10.21776/ub.jpacr.2017.006.01.280

    Article  Google Scholar 

  14. N. Taoualit, K. Boutemak, Z. Chemat-Djenni, A. Douara, Chem. Eng. Trans. (2021). https://doi.org/10.3303/CET2186182

    Article  Google Scholar 

  15. S.G. Intasa-Ard, S. Bureekaew, M. Ogawa, J. Ceram. Soc. Jpn (2019). https://doi.org/10.2109/jcersj2.18140

    Article  Google Scholar 

  16. R.M.M. dos Santos, R.G.L. Goncalves, V.R.L. Constantino, C.V. Santilli, P.D.J. Borges, F.G. Pinto, Appl. Clay Sci. (2017). https://doi.org/10.1016/j.clay.2017.02.005

    Article  Google Scholar 

  17. S. Paikaray, M.J. Hendry, Appl. Clay Sci. (2014). https://doi.org/10.1016/j.clay.2013.11.034

    Article  Google Scholar 

  18. X. Tan, S. Liu, Y. Liu, Sci. Rep. (2016). https://doi.org/10.1038/srep39691

    Article  Google Scholar 

  19. S. Babay, M. Toumi, J. Nanotechnol. Mater. Sci. (2017). https://doi.org/10.15436/2377-1372.17.1688

    Article  Google Scholar 

  20. A. Misol, F.M. Labajos, A. Morato, V. Rives, Appl. Clay Sci. (2020). https://doi.org/10.1016/j.clay.2020.105539

    Article  Google Scholar 

  21. K. Nejati, A. Mokhtari, F. Khodam, Z. Rezvani, Can. J. Chem. (2016). https://doi.org/10.1139/cjc-2015-0265

    Article  Google Scholar 

  22. L. Chia-Hsuan, H.-L. Chu, H. Weng-Sing, W. Moo-Chin, K. Horng-Huey, AIP Adv. (2017). https://doi.org/10.1063/1.4990832

    Article  Google Scholar 

  23. B.L.P. Figueredo, S.R. Alvarenga, J.A. Lopes, D. Eulálio, Rev. Bras. Ciênc. Solo (2015). https://doi.org/10.1590/01000683rbcs20150817

    Article  Google Scholar 

  24. G.D. Mendoza, Síntesis y caracterización de Hidróxidos dobles laminares (HDL) con adición de cationes M4+ (Universidad Autónoma Metropolitana, 2017). http://tesiuami.izt.uam.mx/uam/aspuam/presentatesis.php?recno=17678&docs=UAMI17678.pdf. Accessed 10 Aug 2021

  25. J.C. Arenas González, Remoción del colorante amarillo acido 14 vía adsorción con materiales tipo hidrotalcita NiMgAl (Instituto Politécnico Nacional, 2018). http://tesis.ipn.mx/handle/123456789/24887. Accessed 8 Aug 2021

  26. M.A. Iqbal, A.M. Fedel, Coatings (2019). https://doi.org/10.3390/coatings9010030

    Article  Google Scholar 

  27. A. Nimibofa, S.A. Seimokumo, Open J. Phys. Chem. (2015). https://doi.org/10.4236/ojpc.2015.53007

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the Tecnológico Nacional de México (TecNM) for providing the financial support for this work (Project 10403.21-P) and the Nacional de Ciencia y Tecnología (CONACYT) for providing the scholarship granted to Estrada-Moreno J. C. (Scholarship No. 731166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Jiménez-Núñez.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest that could have influenced the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Moreno, J.C., Jiménez-Núñez, M.L., Zavala-Arce, R.E. et al. X-ray diffraction and FTIR analysis on effect of time and temperature layered double hydroxides synthesis. MRS Advances 6, 980–984 (2021). https://doi.org/10.1557/s43580-021-00157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00157-3

Navigation