Skip to main content
Log in

The antibacterial efficacy of aluminum oxide nanostructures by hot water treatment for HVAC systems

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A review of the current literature suggests that heating, ventilating, and air conditioning (HVAC) systems increase the risk of nosocomial infections if not properly maintained and frequently scrutinized via quality checks. Herein, we present a novel hot water treatment (HWT) to produce aluminum oxide (Al2O2) nanostructures on the surface of aluminum (Al) sheets which are used as ductwork for HVAC systems. These aluminum oxide nanostructures, because of morphological changes undergone during hot water treatment, have the unique ability to inhibit bacteria growth using both physical and chemical mechanisms of action, i.e., contact cell membrane damage and reactive oxygen species (ROS). Air and surface analysis was done with an untreated ventilation system and the HWT ventilation system with Al2O2 nanostructures. We observed ~ 460 Escherichia coli colonies on agar plates in untreated control samples, while almost no bacteria growth was observed on the agar plates placed in the nanostructured aluminum sheets. This research clearly demonstrates the effectiveness of this novel, inexpensive, and chemical-free method of producing aluminum oxide nanostructures to decrease bacteria growth in HVAC systems and in turn significantly improving the air quality.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Kröling, Health and Well-Being Disorders in Air-Conditioned Buildings (W. Zuckschwerdt Verlag, München, 1985), pp. 7–29

    Google Scholar 

  2. M. Leung, A.H. Chan, Control and management of hospital indoor air quality. Med. Sci. Monit. 12(3), R17-23 (2006). https://doi.org/10.1016/j.msec.2014.08.031

    Article  CAS  Google Scholar 

  3. M. Haque, M. Sartelli, J. McKimm, M. AbuBakar, Health care-associated infections—an overview. Infect. Drug Resist. 11, 2321–2333 (2018)

    Article  Google Scholar 

  4. Y. Peleg, D.C. Hooper, Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 362(19), 1804–1813 (2010). https://doi.org/10.1056/NEJMra0904124

    Article  CAS  Google Scholar 

  5. A.J. Prussin, E.B. Garcia, L.C. Marr, Total virus and bacteria concentrations in indoor and outdoor air. Environ. Sci. Technol. Lett. 2(4), 84–88 (2015). https://doi.org/10.1021/acs.estlett.5b00050

    Article  CAS  Google Scholar 

  6. Centers for Disease Control and Prevention, Healthcare-associated Infections. (Data Portal 2020), https://www.cdc.gov/hai/data/portal/index.html. Accessed 23 March 2021

  7. J. Guo, Y. Xiong, T. Kang, Z. Xiang, C. Qin, Bacterial community analysis of floor dust and HEPA filters in air purifiers used in office rooms in ILAS, Beijing. Sci. Rep. 10, 6417 (2020). https://doi.org/10.1038/s41598-020-63543-1

    Article  CAS  Google Scholar 

  8. Y.C. Yen, C.Y. Yang, C.K. Ho, P.C. Yen, Y.T. Cheng, K.D. Mena, T.C. Lee, P.S. Chen, Indoor ozone and particulate matter modify the association between airborne endotoxin and schoolchildren’s lung function. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2019.135810

    Article  Google Scholar 

  9. M. Isser, H. Kranebitter, E. Kühn, W. Lederer, High-energy visible light transparency and ultraviolet ray transmission of metallized rescue sheets. Sci. Rep. 9, 11208 (2019). https://doi.org/10.1038/s41598-019-47418-8

    Article  CAS  Google Scholar 

  10. G. Pyrgiotakisa, J. McDevitta, A. Bordin, E. Diaz, R. Molina, C. Watson, G. Deloid, S. Lenard, N. Fix, M. Yosuke, T. Yamauchi, J. Brain, P. Demokritou, A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. Environ. Sci. Nano 2014(1), 15–26 (2014). https://doi.org/10.1039/C3EN00007A

    Article  Google Scholar 

  11. A.E. Aiello, B. Marshall, S.B. Levy, P. Della-Latta, S.X. Lin, E. Larson, Antibacterial cleaning products and drug resistance. Emerg. Infect. Dis. 11(10), 1565–1570 (2005). https://doi.org/10.3201/eid1110.041276

    Article  Google Scholar 

  12. N.S. Saadi, L.B. Hassan, T. Karabacak, Metal oxide nanostructures by a simple hot water treatment. Sci. Rep. 7, 7158 (2017). https://doi.org/10.1038/s41598-017-07783-8

    Article  CAS  Google Scholar 

  13. United States Environmental Protection Agency (EPA). EnviroAtlas. Should You Have the Air Ducts in Your Home Cleaned?. Retrieved August 5, 2021. https://www.epa.gov/indoor-air-quality-iaq/should-you-have-air-ducts-your-home-cleaned.

  14. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016). https://doi.org/10.3389/fmicb.2016.01831

    Article  Google Scholar 

  15. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44, 278–284 (2014). https://doi.org/10.1016/j.msec.2014.08.031

    Article  CAS  Google Scholar 

  16. S. Ghosh, S. Patil, M. Ahire, R. Kitture, S. Kale, K. Pardesi, S. Camera, J. Bellare, D. Dhavale, A. Jabgunde, B. Chopade, Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 7, 483–496 (2012). https://doi.org/10.2147/IJN.S24793

    Article  CAS  Google Scholar 

  17. N. Saadi, K. Alotaibi, L. Hassan, Q. Smith, F. Watanabe, A. Khan, T. Karabacak, Enhancing the antibacterial efficacy of aluminum foil by nanostructuring its surface using hot water treatment. Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abfd59

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to show appreciation to Arkansas Research Alliance for their support and the UALR Nanotechnology Center for their assistance with SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quinshell Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, K., Smith, Q., Esparza, A. et al. The antibacterial efficacy of aluminum oxide nanostructures by hot water treatment for HVAC systems. MRS Advances 6, 701–705 (2021). https://doi.org/10.1557/s43580-021-00126-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00126-w

Navigation