Skip to main content

Advertisement

Log in

Enhanced metallicity in defected Zigzag graphene nanoribbons: Role of oxygen doping

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The effect of oxygen (O) doping in Zigzag graphene nanoribbons (GNR) has been investigated in terms of their stability and electronic properties, using a density-functional theory-based ab-initio approach. The Zigzag GNR has been subjected to mono vacancy, and decorated with three possible sites of oxygen impurities around the monovacancy (MV). The stability of the systems has been analyzed in terms of cohesive energy and the electronic properties in terms of band structure and density of states profiles. The cohesive energy calculations suggest that the formation of the pyridine-type defects with oxygen doping has nearly the same stability as in case of monovacancy introduced system. From the electronic band structure and density of state profile, it has been observed that the metallicity of the ZGNR enhances with O doping, which can further be validated through the increase in density of states at the Fermi level, as well as the electron density and electron difference density profiles. This enhanced metallicity in ZGNR defends its possible application as metallic electrodes and interconnects in the electronic industry.

Graphic abstract

Geometry, bandstructure, density of states and electron difference density of oxygen decorated MVZGNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science (-80) 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  3. A.K. Geim and K.S. Novoselov, in: Nanosci. Technol. A Collect. Rev. from Nat. Journals, World Scientific, (2010), pp. 11–19.

  4. Y. Xu, A. Srivastava, Int. J. Circuit Theory Appl. 38, 559–575 (2010)

    Google Scholar 

  5. B.K. Kaushik and M.K. Majumder, in: Carbon Nanotub. Based VLSI Interconnects, Springer, (2015), pp. 17–37.

  6. M.V. Kharlamova, Prog. Mater. Sci. 77, 125–211 (2016)

    Article  CAS  Google Scholar 

  7. S. Rakheja, V. Kumar, A. Naeemi, Proc. IEEE 101, 1740–1765 (2013)

    Article  CAS  Google Scholar 

  8. P. Sharma, I. Kaur, S. Gupta, S. Singh, in AIP Conference Proceedings (AIP Publishing LLC, 2016), p. 20110

  9. S. Singh, A. De Sarkar, I. Kaur, Mater. Res. Bull. 87, 167–176 (2017)

    Article  CAS  Google Scholar 

  10. P. Rani, V.K. Jindal, RSC Adv. 3, 802–812 (2013)

    Article  CAS  Google Scholar 

  11. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Nano Lett., 8, 3582–3586 (2008)

    Google Scholar 

  12. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Nature 430, 870–873 (2004)

    Article  CAS  Google Scholar 

  13. A.W. Robertson, B. Montanari, K. He, C.S. Allen, Y.A. Wu, N.M. Harrison, A.I. Kirkland, J.H. Warner, ACS Nano 7(5), 4495–502 (2013)

    Article  CAS  Google Scholar 

  14. M.K. Kostov, E.E. Santiso, A.M. George, K.E. Gubbins, M.B. Nardelli, Phys. Rev. Lett., 95, 136105 (2005)

    Article  CAS  Google Scholar 

  15. J. Feng, Y.-J. Liu, J. Zhao, J. Mol. Model., 20, 1–7 (2014)

    Google Scholar 

  16. Z. Hou, D.-J. Shu, G.-L. Chai, T. Ikeda, K. Terakura, J. Phys. Chem. C, 118, 19795–19805 (2014)

    Article  CAS  Google Scholar 

  17. J.M. Chem, T.P. Kaloni, Y.C. Cheng, R. Faccio, U. Schwingenschl, J. Mater. Chem. 21(45), 18284–18288 (2011)

    Article  Google Scholar 

  18. https://www.synopsys.com/silicon/quantumatk.html. Accessed 10 Dec 2020

  19. S. Agrawal, A. Srivastava, G. Kaushal, in 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (2020), pp. 01TPNS03-1–01TPNS03-5

  20. Y. Fujimoto, S. Saito, Phys. Rev. B 84, 1–7 (2011)

    Article  Google Scholar 

  21. A.G. Garcia, S.E. Baltazar, A.H.R. Castro, J.F.P. Robles, A. Rubio, J. Comput. Theor. Nanosci. 5, 2221–2229 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Kaushal, G. & Srivastava, A. Enhanced metallicity in defected Zigzag graphene nanoribbons: Role of oxygen doping. MRS Advances 6, 723–728 (2021). https://doi.org/10.1557/s43580-021-00121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00121-1

Navigation