Skip to main content
Log in

Berkovich nanoindentation study of 16 nm Cu/Nb ARB nanolaminate: Effect of anisotropy on the surface pileup

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Nanoindentation is widely used to investigate elastic modulus, hardness and work hardening behaviour of nano- and micro-scale laminates. In this work, 16 nm accumulative roll bonding (ARB) Cu/Nb nanolaminate is used as a test material due to its interfacial anisotropy owing to the presence of contrasting interfaces along rolling (RD) and transverse direction (TD). Nanoindentation was performed along TD as well as RD of ARB Cu/Nb nanolaminate, and then scanning probe microscopy (SPM) data were collected to measure the pileup along RD and TD. Nanolaminate along RD was found to show higher surface pileup than TD which is attributed to crystallographic and interfacial anisotropy resulting in (a) higher yield strength (low plasticity) along TD in comparison to RD and (b) high interfacial sliding in the case of TD resulting in less co-deformation of layers in comparison to RD. The characterization of surface pileup is of significant importance for facilitating the study of anisotropic micro/nanolaminates.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. G.P. Zhang, Y. Liu, W. Wang, J. Tan, Appl. Phys. Lett. 88, 13105 (2006)

    Article  Google Scholar 

  2. Y.P. Li, X.F. Zhu, J. Tan, B. Wu, W. Wang, G.P. Zhang, J. Mater. Res. 24, 728 (2009)

    Article  CAS  Google Scholar 

  3. Y.P. Li, X.F. Zhu, G.P. Zhang, J. Tan, W. Wang, B. Wu, Philos. Mag. 90, 3049 (2010)

    Article  CAS  Google Scholar 

  4. W.W. Gerberich, D.E. Kramer, N.I. Tymiak, A.A. Volinsky, D.F. Bahr, M.D. Kriese, Acta Mater. 47, 4115 (1999)

    Article  CAS  Google Scholar 

  5. D. Esqué-de los Ojos, J. Očenášek, J. Alcalá, Comput. Mater. Sci. 86, 186 (2014)

    Article  Google Scholar 

  6. M.M. Biener, J. Biener, A.M. Hodge, A.V. Hamza, Phys. Rev. B 76, 165422 (2007)

    Article  Google Scholar 

  7. J.R. Morris, H. Bei, G.M. Pharr, E.P. George, Phys. Rev. Lett. 106, 165502 (2011)

    Article  CAS  Google Scholar 

  8. A.S. Budiman, R. Sahay, H.P.A. Ali, S.K. Tippabhotla, I. Radchenko, N. Raghavan, Mater. Sci. Eng. A 803, 140705 (2021)

  9. H.P.A. Ali, I. Radchenko, N. Li, A. Budiman, Mater. Sci. Eng. A 738, 253 (2018)

    Article  Google Scholar 

  10. H.P.A. Ali, I. Radchenko, N. Li, A. Budiman, J. Mater. Res. 34, 1564 (2019)

    Article  Google Scholar 

  11. T. Tian, R. Morusupalli, H. Shin, H.-Y. Son, K.-Y. Byun, Y.-C. Joo, R. Caramto, L. Smith, Y.L. Shen, M. Kunz, Procedia Eng. 139, 101 (2016)

    Article  CAS  Google Scholar 

  12. W.J.R. Song, S.K. Tippabhotla, A.A.O. Tay, A.S. Budiman, IEEE J. Photovolt. 8, 210 (2017)

    Article  Google Scholar 

  13. H.P.A. Ali, A. Budiman, J. Mater. Res. 34, 1449 (2019)

    Article  Google Scholar 

  14. I.J. Beyerlein, N.A. Mara, J.S. Carpenter, T. Nizolek, W.M. Mook, T.A. Wynn, R.J. McCabe, J.R. Mayeur, K. Kang, S. Zheng, J. Mater. Res. 28, 1799 (2013)

    Article  CAS  Google Scholar 

  15. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, A. Misra, Appl. Phys. Lett. 92, 231901 (2008)

    Article  Google Scholar 

  16. M.J. Demkowicz, R.G. Hoagland, J.P. Hirth, Phys. Rev. Lett. 100, 136102 (2008)

    Article  CAS  Google Scholar 

  17. Radchenko, H.P. Anwarali, S.K. Tippabhotla, A.S. Budiman, Acta Mater. 156, 125 (2018)

    Article  CAS  Google Scholar 

  18. A.C. Fischer-Cripps, D.W. Nicholson, Appl. Mech. Rev. 57, B12 (2004)

    Article  Google Scholar 

  19. T.E. Mitchell, Y.C. Lu, A.J.G. Jr, M. Nastasi, H. Kung, J. Am. Ceram. Soc. 80, 1673 (1997)

  20. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  CAS  Google Scholar 

  21. T. Nizolek, I.J. Beyerlein, N.A. Mara, J.T. Avallone, T.M. Pollock, Appl. Phys. Lett. 108, 2 (2016)

    Article  Google Scholar 

  22. T. Chen, R. Yuan, I.J. Beyerlein, C. Zhou, Int. J. Plast. 124, 247 (2020)

    Article  CAS  Google Scholar 

  23. Y.-T. Cheng, C.-M. Cheng, Surf. Coat. Technol. 133, 417 (2000)

    Article  Google Scholar 

  24. O. Casals, J. Očenášek, J. Alcala, Acta Mater. 55, 55 (2007)

    Article  CAS  Google Scholar 

  25. M.J. Demkowicz, L. Thilly, Acta Mater. 59, 7744 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge co-funding provided by the National Research Foundation (NRF) of Singapore’s government through the Grant NRF2018-NRF-ANR042 (Street Art Nano) and the ANR (Agence Nationale de la Recherche) of France’s government through the Grant ANR ANR18-CE09-003801 (Street Art Nano). ASB, FEG and CH also gratefully acknowledge funding from BINUS University in the form of PIB (Penelitian Internasional BINUS; BINUS International Collaboration Research) through the Grant PIB006/2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Sahay or Arief S. Budiman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahay, R., Budiman, A.S., Harito, C. et al. Berkovich nanoindentation study of 16 nm Cu/Nb ARB nanolaminate: Effect of anisotropy on the surface pileup. MRS Advances 6, 495–499 (2021). https://doi.org/10.1557/s43580-021-00108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00108-y

Navigation