Skip to main content
Log in

Strain rate dependence of inelastic strain recovery in ultrafine-grained Al films with different textures

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We investigated the tensile load–unload response and inelastic strain recovery in freestanding ultrafine-grained aluminum films with highly dissimilar texture at strain rates ranging from ~ 10–6/s to 10–3/s. For (110) textured bicrystalline films, the flow stress was nearly insensitive to strain rate and inelastic strain recovery both during and after unloading was small, leading to fairly low stress–strain hysteresis. In contrast, there was a substantial increase in flow stress for non-textured films with increasing strain rate. Furthermore, there was significant inelastic strain recovery both during and after unloading, resulting in a large stress–strain hysteresis. Interestingly, while the proportion of inelastic strain recovered during and after unloading varied with strain rate, the total strain recovery remained nearly constant. These observations underscore the influence of crystallographic texture and strain rate on the deformation mechanisms as well as the macroscopic behavior of ultrafine-grained metal films.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the experimental data in the manuscript are available upon request from the corresponding author.

References

  1. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159–5172 (2003). https://doi.org/10.1016/S1359-6454(03)00365-3

    Article  CAS  Google Scholar 

  2. I. Chasiotis, C. Bateson, K. Timpano, A.S. McCarty, N.S. Barker, J.R. Stanec, Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515, 3183–3189 (2007). https://doi.org/10.1016/j.tsf.2006.01.033

    Article  CAS  Google Scholar 

  3. Y. Wang, A. Hamza, E. Ma, Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715–2726 (2006). https://doi.org/10.1016/j.actamat.2006.02.013

    Article  CAS  Google Scholar 

  4. D.S. Gianola, D.H. Warner, J.F. Molinari, K.J. Hemker, Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scr. Mater. 55, 649–652 (2006). https://doi.org/10.1016/j.scriptamat.2006.06.002

    Article  CAS  Google Scholar 

  5. J. Chen, L. Lu, K. Lu, Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913–1918 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.022

    Article  CAS  Google Scholar 

  6. F. Dalla Torre, H. Van Swygenhoven, M. Victoria, Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater. 50, 3957–3970 (2002)

    Article  CAS  Google Scholar 

  7. J. Rajagopalan, C. Rentenberger, H. Peter Karnthaler, G. Dehm, M.T.A. Saif, In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals. Acta Mater. 58, 4772–4782 (2010). https://doi.org/10.1016/j.actamat.2010.05.013

    Article  CAS  Google Scholar 

  8. J. Rajagopalan, M.T.A. Saif, Effect of microstructural heterogeneity on the mechanical behavior of nanocrystalline metal films. J. Mater. Res. 26, 2826–2832 (2011). https://doi.org/10.1557/jmr.2011.316

    Article  CAS  Google Scholar 

  9. E. Izadi, J. Rajagopalan, Texture dependent strain rate sensitivity of ultrafine-grained aluminum films. Scr. Mater. 114, 65–69 (2016). https://doi.org/10.1016/j.scriptamat.2015.12.003

    Article  CAS  Google Scholar 

  10. E. Izadi, S. Opie, H. Lim, P. Peralta, J. Rajagopalan, Effect of plastic anisotropy on the deformation behavior of bicrystalline aluminum films—experiments and modeling. Acta Mater. 142, 58–70 (2018). https://doi.org/10.1016/j.actamat.2017.09.038

    Article  CAS  Google Scholar 

  11. K.N. Jonnalagadda, I. Chasiotis, S. Yagnamurthy, J. Lambros, J. Pulskamp, R. Polcawich, M. Dubey, Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp. Mech. 50, 25–35 (2010). https://doi.org/10.1007/s11340-008-9212-7

    Article  CAS  Google Scholar 

  12. N.J. Karanjgaokar, C.-S. Oh, J. Lambros, I. Chasiotis, Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate. Acta Mater. 60, 5352–5361 (2012). https://doi.org/10.1016/j.actamat.2012.06.018

    Article  CAS  Google Scholar 

  13. H. Niwa, M. Kato, Epitaxial growth of Al on Si (001) by sputtering. Appl. Phys. Lett. 59, 543–545 (1991)

    Article  CAS  Google Scholar 

  14. J.H. Han, M.T.A. Saif, In situ microtensile stage for electromechanical characterization of nanoscale freestanding films. Rev. Sci. Instrum. 77, 045102 (2006). https://doi.org/10.1063/1.2188368

    Article  CAS  Google Scholar 

  15. F. Dalla Torre, P. Spätig, R. Schäublin, M. Victoria, Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53, 2337–2349 (2005). https://doi.org/10.1016/j.actamat.2005.01.041

    Article  CAS  Google Scholar 

  16. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041–4065 (2007). https://doi.org/10.1016/j.actamat.2007.01.038

    Article  CAS  Google Scholar 

  17. S.S. Shishvan, L. Nicola, E. Van der Giessen, Bauschinger effect in unpassivated freestanding thin films. J. Appl. Phys. 107, 093529 (2010). https://doi.org/10.1063/1.3407505

    Article  CAS  Google Scholar 

  18. E. Izadi, A. Darbal, R. Sarkar, J. Rajagopalan, Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping. Mater. Des. 113, 186–194 (2017). https://doi.org/10.1016/j.matdes.2016.10.015

    Article  CAS  Google Scholar 

  19. A. Kashiwar, H. Hahn, C. Kübel, In situ TEM observation of cooperative grain rotations and the bauschinger effect in nanocrystalline palladium. Nanomater. Basel Switz. 11, 432 (2021). https://doi.org/10.3390/nano11020432

    Article  CAS  Google Scholar 

  20. F. Mompiou, D. Caillard, M. Legros, H. Mughrabi, In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium. Acta Mater. 60, 3402–3414 (2012). https://doi.org/10.1016/j.actamat.2012.02.049

    Article  CAS  Google Scholar 

  21. K.M. Davoudi, L. Nicola, J.J. Vlassak, Bauschinger effect in thin metal films: Discrete dislocation dynamics study. J. Appl. Phys. 115, 013507 (2014). https://doi.org/10.1063/1.4861147

    Article  CAS  Google Scholar 

  22. R. Berlia, P. Rasmussen, S. Yang, J. Rajagopalan, Tensile behavior and inelastic strain recovery of Cu-Co nanolaminates. Scr. Mater. 197, 113781 (2021). https://doi.org/10.1016/j.scriptamat.2021.113781

    Article  CAS  Google Scholar 

  23. L. Thilly, P.O. Renault, S. Van Petegem, S. Brandstetter, B. Schmitt, H. Van Swygenhoven, V. Vidal, F. Lecouturier, Evidence of internal Bauschinger test in nanocomposite wires during in situ macroscopic tensile cycling under synchrotron beam. Appl. Phys. Lett. 90, 241907 (2007). https://doi.org/10.1063/1.2748325

    Article  CAS  Google Scholar 

  24. L. Thilly, S.V. Petegem, P.-O. Renault, F. Lecouturier, V. Vidal, B. Schmitt, H.V. Swygenhoven, A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires. Acta Mater. 57, 3157–3169 (2009). https://doi.org/10.1016/j.actamat.2009.03.021

    Article  CAS  Google Scholar 

  25. Q. Qin, S. Yin, G. Cheng, X. Li, T.-H. Chang, G. Richter, Y. Zhu, H. Gao, Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 6, 5983 (2015). https://doi.org/10.1038/ncomms6983

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Science Foundation (NSF) Grant DMR 1454109. The authors would like to gratefully acknowledge the use of facilities at the Eyring Materials Center and ASU Nanofab at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagannathan Rajagopalan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, E., Berlia, R. & Rajagopalan, J. Strain rate dependence of inelastic strain recovery in ultrafine-grained Al films with different textures. MRS Advances 6, 489–494 (2021). https://doi.org/10.1557/s43580-021-00100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00100-6

Navigation