Skip to main content

Advertisement

Log in

Effect of powder morphology on the microstructure and mechanical property gradients in stainless steels induced by thermal gradients in spark plasma sintering

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) utilizes joule heating to achieve rapid heating to densify a powder compact. Thermal gradients during SPS lead to microstructural and property gradients in the sintered parts. To elucidate the effect of starting powder morphology on these gradients, the present work investigated location-specific microstructure and mechanical properties of austenitic stainless steels fabricated via SPS of unsymmetrical powder compacts by paring three types of powders: spherical, plate-like and flakey. Local mechanical properties as a function of radial distance from the center of the sample were investigated via microhardness tests, nanoindentation, and nanoscratch. Radially graded microstructure (porosity and grain size) resulting from the thermal gradients in SPS led to gradients in local microhardness (ΔH = 120–150 MPa) and Young’s modulus (ΔE = 30–65 GPa), yielding higher wear resistance at the sample surface and higher elastic modulus at the sample center, suggesting that higher powder morphology aspect ratios lead to larger thermal gradients.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this article and its supplementary information file. Additional information can be requested by contacting the authors.

References

  1. Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang, S.L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108662

    Article  Google Scholar 

  2. G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi 2Te 3 thermoelectric properties. Mater. Res. Bull. 47, 1954–1960 (2012). https://doi.org/10.1016/j.materresbull.2012.04.019

    Article  CAS  Google Scholar 

  3. P. Luo, H. Xie, M. Paladugu, S. Palanisamy, M.S. Dargusch, K. Xia, Recycling of titanium machining chips by severe plastic deformation consolidation. J. Mater. Sci. 45, 4606–4612 (2010). https://doi.org/10.1007/s10853-010-4443-2

    Article  CAS  Google Scholar 

  4. S. Shamsudin, M.A. Lajis, Z.W. Zhong, Solid-state recycling of light metals: A review. Adv. Mech. Eng. 8, 1–23 (2016). https://doi.org/10.1177/1687814016661921

    Article  CAS  Google Scholar 

  5. S. Seyyedin, H. Zangi, M. Bozorgmehr, B. Ghasemi, M.M. Tavallaei, S. Adib, The effect of mechanical alloying time on the microstructural and mechanical properties of spark plasma sintered Ta–10W. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.140024

    Article  Google Scholar 

  6. H. Tsukamoto, Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering. Results Mater. 9, 100167 (2021). https://doi.org/10.1016/j.rinma.2020.100167

    Article  CAS  Google Scholar 

  7. M. Bahraminasab, S. Ghaffari, H. Eslami-Shahed, Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. J. Mech. Behav. Biomed. Mater. 72, 82–89 (2017). https://doi.org/10.1016/j.jmbbm.2017.04.024

    Article  CAS  Google Scholar 

  8. Y. Tang, W. Qiu, L. Chen, X. Yang, Y. Song, J. Tang, Preparation of W-V functionally gradient material by spark plasma sintering. Nucl. Eng. Technol. 52, 1706–1713 (2020). https://doi.org/10.1016/j.net.2020.01.008

    Article  CAS  Google Scholar 

  9. N.A. Safronova, O.S. Kryzhanovska, M.V. Dobrotvorska, A.E. Balabanov, V.V. Tolmachev, R.P. Yavetskiy, S.V. Parkhomenko, R.Y. Brodskii, V.N. Baumer, D.Y. Kosyanov, O.O. Shichalin, E.K. Papynov, J. Li, Influence of sintering temperature on structural and optical properties of Y2O3–MgO composite SPS ceramics. Ceram. Int. 46, 6537–6543 (2020). https://doi.org/10.1016/j.ceramint.2019.11.137

    Article  CAS  Google Scholar 

  10. M. Sokol, S. Kalabukhov, V. Kasiyan, A. Rothman, M.P. Dariel, N. Frage, Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG. Opt. Mater. (Amst) 38, 204–210 (2014). https://doi.org/10.1016/j.optmat.2014.10.030

    Article  CAS  Google Scholar 

  11. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest, modeling of the tempeature distribution during field assisted sintering. Acta Mater. 53, 4379–4388 (2005)

    Article  CAS  Google Scholar 

  12. K. Matsugi, H. Kuramoto, T. Hatayama, O. Yanagisawa, Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders. J. Mater. Process. Technol. 134, 225–232 (2003). https://doi.org/10.1016/S0924-0136(02)01039-7

    Article  CAS  Google Scholar 

  13. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Mater. Sci. Eng. A 394, 139–148 (2005). https://doi.org/10.1016/j.msea.2004.11.019

    Article  CAS  Google Scholar 

  14. M. Demuynck, J.P. Erauw, O. Van Der Biest, F. Delannay, F. Cambier, Influence of conductive secondary phase on thermal gradients development during Spark Plasma Sintering (SPS) of ceramic composites. Ceram. Int. 42, 17990–17996 (2016). https://doi.org/10.1016/j.ceramint.2016.07.093

    Article  CAS  Google Scholar 

  15. B. Nili, G. Subhash, Influence of porosity and pellet dimensions on temperature and stress inhomogeneities during spark plasma sintering of ceramic fuel. Ceram. Int. 45, 7376–7384 (2019). https://doi.org/10.1016/j.ceramint.2019.01.022

    Article  CAS  Google Scholar 

  16. S. Muñoz, U. Anselmi-Tamburini, Parametric investigation of temperature distribution in field activated sintering apparatus. Int. J. Adv. Manuf. Technol. 65, 127–140 (2013). https://doi.org/10.1007/s00170-012-4155-7

    Article  Google Scholar 

  17. D. Giuntini, J. Raethel, M. Herrmann, A. Michaelis, E.A. Olevsky, Advancement of tooling for spark plasma sintering. J. Am. Ceram. Soc. 98, 3529–3537 (2015). https://doi.org/10.1111/jace.13528

    Article  CAS  Google Scholar 

  18. D. Giuntini, Optimization of Spark-Plasma Sintering Efficiency: Tailoring Material Structure and Advanced Tooling Design. PhD dissertation. UC San Deigo, 2016

  19. D. Dvorský, J. Kubásek, M. Roudnická, F. Průša, D. Nečas, P. Minárik, J. Stráská, D. Vojtěch, The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2020.12.012

    Article  Google Scholar 

  20. S. Deng, J. Li, R. Li, H. Zhao, T. Yuan, L. Li, Y. Zhang, The effect of particle size on the densification kinetics of tungsten powder during spark plasma sintering. Int. J. Refract. Met. Hard Mater. 93, 105358 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105358

    Article  CAS  Google Scholar 

  21. C. Magnus, W.M. Rainforth, Influence of sintering environment on the spark plasma sintering of Maxthal 312 (nominally-Ti3SiC2) and the role of powder particle size on densification. J. Alloys Compd. 801, 208–219 (2019). https://doi.org/10.1016/j.jallcom.2019.06.076

    Article  CAS  Google Scholar 

  22. S.Y. Gomez, D. Hotza, Predicting powder desification during sintering. J. Eur. Ceram. Soc. 38, 1736–1741 (2018)

    Article  CAS  Google Scholar 

  23. B. Ratzker, A. Wagner, S. Kalabukhov, S. Samuha, N. Frage, Non-uniform microstructure evolution in transparent alumina during dwell stage of high-pressure spark plasma sintering. Acta Mater. 199, 469–479 (2020). https://doi.org/10.1016/j.actamat.2020.08.036

    Article  CAS  Google Scholar 

  24. J. Diatta, G. Antou, N. Pradeilles, A. Maître, Numerical modeling of spark plasma sintering—discussion on densification mechanism identification and generated porosity gradients. J. Eur. Ceram. Soc. 37, 4849–4860 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.052

    Article  CAS  Google Scholar 

  25. A. Ibrahim, F. Zhang, E. Otterstein, E. Burkel, Processing of porous Ti and Ti5Mn foams by spark plasma sintering. Mater. Des. 32, 146–153 (2011). https://doi.org/10.1016/j.matdes.2010.06.019

    Article  CAS  Google Scholar 

  26. I. Farias, L. Olmos, O. Jimenez, M. Flores, A. Braem, J. Vleugels, Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering. Trans. Nonferrous Met. Soc. China 29, 1653–1664 (2019). https://doi.org/10.1016/S1003-6326(19)65072-7

    Article  CAS  Google Scholar 

  27. C. Collard, Z. Trzaska, L. Durand, J.-M. Chaix, J.-P. Monchoux, Theoretical and experimental investigations of local overheating at particle contacts in spark plasma sintering. Powder Technol. 321, 458–470 (2017). https://doi.org/10.1016/j.powtec.2017.08.033

    Article  CAS  Google Scholar 

  28. T.M. Vidyuk, D.V. Dudina, M.A. Korchagin, A.I. Gavrilov, T.S. Skripkina, A.V. Ukhina, A.G. Anisimov, B.B. Bokhonov, Melting at the inter-particle contacts during Spark Plasma Sintering: direct microstructural evidence and relation to particle morphology. Vacuum 181, 109566 (2020). https://doi.org/10.1016/j.vacuum.2020.109566

    Article  CAS  Google Scholar 

  29. J.M. Montes, F.G. Cuevas, J. Cintas, Electrical resistivity of metal powder aggregates. Metall. Mater. Trans. B. 38, 957–964 (2007). https://doi.org/10.1007/s11663-007-9097-3

    Article  CAS  Google Scholar 

  30. J.M. Montes, F.G. Cuevas, J. Cintas, Electrical resistivity of a titanium powder mass. Granul. Matter. 13, 439–446 (2011). https://doi.org/10.1007/s10035-010-0246-z

    Article  Google Scholar 

  31. L.P. Lefebvre, G. Pleizier, Y. Deslandes, Electrical resistivity of green powder compacts. Powder Metall. 44, 259–266 (2001). https://doi.org/10.1179/003258901666437

    Article  CAS  Google Scholar 

  32. J. Kozlík, H. Becker, J. Stráský, P. Harcuba, M. Janeček, Manufacturing of fine-grained titanium by cryogenic milling and spark plasma sintering. Mater. Sci. Eng. A 772, 138783 (2020). https://doi.org/10.1016/j.msea.2019.138783

    Article  CAS  Google Scholar 

  33. C. Li, Y. Zhang, G. Zhou, Z. Wei, L. Zhang, Theoretical modelling of brittle-to-ductile transition load of KDP crystals on (001) plane during nanoindentation and nanoscratch tests. J. Mater. Res. Technol. 9, 14142–14157 (2020). https://doi.org/10.1016/j.jmrt.2020.09.131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The work was supported by the corresponding author’s institutional (start-up) fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaka Ma.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 9062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preston, A.D., Ma, K. Effect of powder morphology on the microstructure and mechanical property gradients in stainless steels induced by thermal gradients in spark plasma sintering. MRS Advances 6, 482–488 (2021). https://doi.org/10.1557/s43580-021-00089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00089-y

Navigation