Abstract
Spark plasma sintering (SPS) utilizes joule heating to achieve rapid heating to densify a powder compact. Thermal gradients during SPS lead to microstructural and property gradients in the sintered parts. To elucidate the effect of starting powder morphology on these gradients, the present work investigated location-specific microstructure and mechanical properties of austenitic stainless steels fabricated via SPS of unsymmetrical powder compacts by paring three types of powders: spherical, plate-like and flakey. Local mechanical properties as a function of radial distance from the center of the sample were investigated via microhardness tests, nanoindentation, and nanoscratch. Radially graded microstructure (porosity and grain size) resulting from the thermal gradients in SPS led to gradients in local microhardness (ΔH = 120–150 MPa) and Young’s modulus (ΔE = 30–65 GPa), yielding higher wear resistance at the sample surface and higher elastic modulus at the sample center, suggesting that higher powder morphology aspect ratios lead to larger thermal gradients.
Graphic Abstract
Similar content being viewed by others
Data availability
All data generated or analyzed in this study are included in this article and its supplementary information file. Additional information can be requested by contacting the authors.
References
Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang, S.L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108662
G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi 2Te 3 thermoelectric properties. Mater. Res. Bull. 47, 1954–1960 (2012). https://doi.org/10.1016/j.materresbull.2012.04.019
P. Luo, H. Xie, M. Paladugu, S. Palanisamy, M.S. Dargusch, K. Xia, Recycling of titanium machining chips by severe plastic deformation consolidation. J. Mater. Sci. 45, 4606–4612 (2010). https://doi.org/10.1007/s10853-010-4443-2
S. Shamsudin, M.A. Lajis, Z.W. Zhong, Solid-state recycling of light metals: A review. Adv. Mech. Eng. 8, 1–23 (2016). https://doi.org/10.1177/1687814016661921
S. Seyyedin, H. Zangi, M. Bozorgmehr, B. Ghasemi, M.M. Tavallaei, S. Adib, The effect of mechanical alloying time on the microstructural and mechanical properties of spark plasma sintered Ta–10W. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.140024
H. Tsukamoto, Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering. Results Mater. 9, 100167 (2021). https://doi.org/10.1016/j.rinma.2020.100167
M. Bahraminasab, S. Ghaffari, H. Eslami-Shahed, Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. J. Mech. Behav. Biomed. Mater. 72, 82–89 (2017). https://doi.org/10.1016/j.jmbbm.2017.04.024
Y. Tang, W. Qiu, L. Chen, X. Yang, Y. Song, J. Tang, Preparation of W-V functionally gradient material by spark plasma sintering. Nucl. Eng. Technol. 52, 1706–1713 (2020). https://doi.org/10.1016/j.net.2020.01.008
N.A. Safronova, O.S. Kryzhanovska, M.V. Dobrotvorska, A.E. Balabanov, V.V. Tolmachev, R.P. Yavetskiy, S.V. Parkhomenko, R.Y. Brodskii, V.N. Baumer, D.Y. Kosyanov, O.O. Shichalin, E.K. Papynov, J. Li, Influence of sintering temperature on structural and optical properties of Y2O3–MgO composite SPS ceramics. Ceram. Int. 46, 6537–6543 (2020). https://doi.org/10.1016/j.ceramint.2019.11.137
M. Sokol, S. Kalabukhov, V. Kasiyan, A. Rothman, M.P. Dariel, N. Frage, Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG. Opt. Mater. (Amst) 38, 204–210 (2014). https://doi.org/10.1016/j.optmat.2014.10.030
K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest, modeling of the tempeature distribution during field assisted sintering. Acta Mater. 53, 4379–4388 (2005)
K. Matsugi, H. Kuramoto, T. Hatayama, O. Yanagisawa, Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders. J. Mater. Process. Technol. 134, 225–232 (2003). https://doi.org/10.1016/S0924-0136(02)01039-7
U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Mater. Sci. Eng. A 394, 139–148 (2005). https://doi.org/10.1016/j.msea.2004.11.019
M. Demuynck, J.P. Erauw, O. Van Der Biest, F. Delannay, F. Cambier, Influence of conductive secondary phase on thermal gradients development during Spark Plasma Sintering (SPS) of ceramic composites. Ceram. Int. 42, 17990–17996 (2016). https://doi.org/10.1016/j.ceramint.2016.07.093
B. Nili, G. Subhash, Influence of porosity and pellet dimensions on temperature and stress inhomogeneities during spark plasma sintering of ceramic fuel. Ceram. Int. 45, 7376–7384 (2019). https://doi.org/10.1016/j.ceramint.2019.01.022
S. Muñoz, U. Anselmi-Tamburini, Parametric investigation of temperature distribution in field activated sintering apparatus. Int. J. Adv. Manuf. Technol. 65, 127–140 (2013). https://doi.org/10.1007/s00170-012-4155-7
D. Giuntini, J. Raethel, M. Herrmann, A. Michaelis, E.A. Olevsky, Advancement of tooling for spark plasma sintering. J. Am. Ceram. Soc. 98, 3529–3537 (2015). https://doi.org/10.1111/jace.13528
D. Giuntini, Optimization of Spark-Plasma Sintering Efficiency: Tailoring Material Structure and Advanced Tooling Design. PhD dissertation. UC San Deigo, 2016
D. Dvorský, J. Kubásek, M. Roudnická, F. Průša, D. Nečas, P. Minárik, J. Stráská, D. Vojtěch, The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2020.12.012
S. Deng, J. Li, R. Li, H. Zhao, T. Yuan, L. Li, Y. Zhang, The effect of particle size on the densification kinetics of tungsten powder during spark plasma sintering. Int. J. Refract. Met. Hard Mater. 93, 105358 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105358
C. Magnus, W.M. Rainforth, Influence of sintering environment on the spark plasma sintering of Maxthal 312 (nominally-Ti3SiC2) and the role of powder particle size on densification. J. Alloys Compd. 801, 208–219 (2019). https://doi.org/10.1016/j.jallcom.2019.06.076
S.Y. Gomez, D. Hotza, Predicting powder desification during sintering. J. Eur. Ceram. Soc. 38, 1736–1741 (2018)
B. Ratzker, A. Wagner, S. Kalabukhov, S. Samuha, N. Frage, Non-uniform microstructure evolution in transparent alumina during dwell stage of high-pressure spark plasma sintering. Acta Mater. 199, 469–479 (2020). https://doi.org/10.1016/j.actamat.2020.08.036
J. Diatta, G. Antou, N. Pradeilles, A. Maître, Numerical modeling of spark plasma sintering—discussion on densification mechanism identification and generated porosity gradients. J. Eur. Ceram. Soc. 37, 4849–4860 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.052
A. Ibrahim, F. Zhang, E. Otterstein, E. Burkel, Processing of porous Ti and Ti5Mn foams by spark plasma sintering. Mater. Des. 32, 146–153 (2011). https://doi.org/10.1016/j.matdes.2010.06.019
I. Farias, L. Olmos, O. Jimenez, M. Flores, A. Braem, J. Vleugels, Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering. Trans. Nonferrous Met. Soc. China 29, 1653–1664 (2019). https://doi.org/10.1016/S1003-6326(19)65072-7
C. Collard, Z. Trzaska, L. Durand, J.-M. Chaix, J.-P. Monchoux, Theoretical and experimental investigations of local overheating at particle contacts in spark plasma sintering. Powder Technol. 321, 458–470 (2017). https://doi.org/10.1016/j.powtec.2017.08.033
T.M. Vidyuk, D.V. Dudina, M.A. Korchagin, A.I. Gavrilov, T.S. Skripkina, A.V. Ukhina, A.G. Anisimov, B.B. Bokhonov, Melting at the inter-particle contacts during Spark Plasma Sintering: direct microstructural evidence and relation to particle morphology. Vacuum 181, 109566 (2020). https://doi.org/10.1016/j.vacuum.2020.109566
J.M. Montes, F.G. Cuevas, J. Cintas, Electrical resistivity of metal powder aggregates. Metall. Mater. Trans. B. 38, 957–964 (2007). https://doi.org/10.1007/s11663-007-9097-3
J.M. Montes, F.G. Cuevas, J. Cintas, Electrical resistivity of a titanium powder mass. Granul. Matter. 13, 439–446 (2011). https://doi.org/10.1007/s10035-010-0246-z
L.P. Lefebvre, G. Pleizier, Y. Deslandes, Electrical resistivity of green powder compacts. Powder Metall. 44, 259–266 (2001). https://doi.org/10.1179/003258901666437
J. Kozlík, H. Becker, J. Stráský, P. Harcuba, M. Janeček, Manufacturing of fine-grained titanium by cryogenic milling and spark plasma sintering. Mater. Sci. Eng. A 772, 138783 (2020). https://doi.org/10.1016/j.msea.2019.138783
C. Li, Y. Zhang, G. Zhou, Z. Wei, L. Zhang, Theoretical modelling of brittle-to-ductile transition load of KDP crystals on (001) plane during nanoindentation and nanoscratch tests. J. Mater. Res. Technol. 9, 14142–14157 (2020). https://doi.org/10.1016/j.jmrt.2020.09.131
Acknowledgements
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The work was supported by the corresponding author’s institutional (start-up) fund.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Preston, A.D., Ma, K. Effect of powder morphology on the microstructure and mechanical property gradients in stainless steels induced by thermal gradients in spark plasma sintering. MRS Advances 6, 482–488 (2021). https://doi.org/10.1557/s43580-021-00089-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-021-00089-y