Skip to main content
Log in

Modified sheet resistance and specific contact resistance of Ni-, Pt- and Ti-based contacts to n-type 3C-SiC

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The modified sheet resistance, Rsk, and specific contact resistance, ρc, of Ni-, Pt- and Ti-based contacts to n-type 3C-SiC have been measured using the circular transmission line model (CTLM). The Ni/Pt/Ni/Pt and Pt/Ni contacts have shown a continuous decrease in Rsk and ρc as a function of annealing temperature from 20 to 1000 °C. A minimum value of Rsk of 5.5 Ω/sq was obtained for Ni/Pt/Ni/Pt contacts at 1000 °C. In comparison, the Ti/Pt and Ti/Ni/Au contacts have shown a significant reduction in Rsk and ρc only after annealing at 900–1000 °C. The ratio of Rsh/Rsk has been determined for each type of contact after annealing at 1000 °C.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Roccaforte, F. La Via, V. Raineri, Int. J. High Speed Electron. Syst. 15(4), 781–820 (2005)

    Article  CAS  Google Scholar 

  2. R. Maboudian, C. Carraro, D.G. Senesky, C.S. Roper, JVST A31(5), 050805–050811 (2013)

    Google Scholar 

  3. K. Vasilevskiy, K. Zekentes, N. Wright in Advancing Silicon Carbide Electronics Technology I, Ed. by K. Zekentes, K. Vasilevskiy, Millersville. Mater. Res. Forum 37 (2018).

  4. D. Massoubre, L. Wang, J. Chai, G. Walker, L. Hold, M. Lobino, S. Dimitriev, A. Iacopi, NSTI-Nanotech. 2, 416–419 (2014)

    CAS  Google Scholar 

  5. J. Wan, M.A. Capane, M.R. Melloch, Solid State Electron. 46(8), 1227–1230 (2002)

    Article  CAS  Google Scholar 

  6. S. Tengeler, B. Kaiser, D. Chaussende, J. Jaegermann, Appl. Surf. Sci. 400, 6–13 (2017)

    Article  CAS  Google Scholar 

  7. J. Eriksson, F. Roccaforte, F. Giannazzo, R.L. Nigro, V. Raineri, J. Lorenzzi, G. Ferro, Appl. Phys. Lett. 94, 112104 (2009)

    Article  Google Scholar 

  8. M. Spera, G. Greco, R.L. Nigro, C. Bongiorno, F. Giannazzo, M. Zielinski, F. La Via, F. Roccaforte, Mater. Sci. Semicond. Process 93, 295–298 (2019)

    Article  CAS  Google Scholar 

  9. A.E. Bazin, J.F. Michaud, C. Autret-Lambert, F. Cayrel, T. Chassagne, M. Portail, M. Zielinski, E. Collard, D. Alquier, Mater. Sci. Eng. B 171(1–3), 120–126 (2010)

    Article  CAS  Google Scholar 

  10. J. Zhang, R.T. Howe, R. Maboudian, Mater. Sci. Eng. B 139, 235–239 (2007)

    Article  CAS  Google Scholar 

  11. J. Biscarrat, X. Song, J.F. Michaud, F. Cayrel, M. Portail, M. Zielinski, T. Chassagne, E. Collard, D. Alquier, Mater. Sci. Forum 711, 179–183 (2012)

    Article  CAS  Google Scholar 

  12. G.K. Reeves, H.B. Harrison, IEEE Electron Dev. Lett. 3(5), 111–113 (1982)

    Article  Google Scholar 

  13. G.K. Reeves, Solid State Electron. 23(5), 487–490 (1980)

    Article  CAS  Google Scholar 

  14. G.K. Reeves, P.W. Leech, H.B. Harrison, Solid State Electron. 38(4), 745–751 (1995)

    Article  CAS  Google Scholar 

  15. P.W. Leech, J. Appl. Phys. 77, 2544–2548 (1995)

    Article  CAS  Google Scholar 

  16. P.W. Leech, G.K. Reeves, Solid State Electron. 38(4), 781–785 (1995)

    Article  CAS  Google Scholar 

  17. N. Lundberg, M. Östling, Solid State Electron. 39(11), 1559–1565 (1996)

    Article  CAS  Google Scholar 

  18. M. Hajłasz, J.J.T.M. Donkers, S.J. Sque, S.B.S. Heil, D.J. Gravesteijn, F.J.R. Rietveld, J. Schmitz, Appl. Phys. Letts. 104, 242109 (2014)

    Article  Google Scholar 

  19. M. Spera, C. Miccoli, R.L. Nigro, C. Bongiorno, D. Corso, S. Di Franco, F. Iucolano, F. Roccaforte, G. Greco, Mater. Sci. Semicond. Process. 78, 111–117 (2018)

    Article  CAS  Google Scholar 

  20. H.P. Kattelus, J.L. Tandon, M.-A. Nicolet, Solid State Electron. 29(9), 903–905 (1986)

    Article  CAS  Google Scholar 

  21. L. Wang, S. Dimitrijev, J. Han, F. Iocopi, L. Hold, P. Tanner, H.B. Harrison, Thin Solid Films 519, 6443–6446 (2011)

    Article  CAS  Google Scholar 

  22. Y. Pan, G.K. Reeves, P.W. Leech, A.S. Holland, IEEE Trans. Electron. Dev. 60, 1202–1207 (2013)

    Article  Google Scholar 

  23. P.W. Leech, M.H. Kibel, A.J. Barlow, G.K. Reeves, A.S. Holland, P. Tanner, Microelectron. Eng. 215, 111016 (2019)

    Article  CAS  Google Scholar 

  24. G.K. Reeves, M.W. Lawn, R.G. Elliman, J. Vac. Sci. Technol. A 10(5), 3203–3206 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in part at the Queensland (Griffith) and Victorian (La Trobe) nodes of the Australian National Fabrication Facility (a company established under the National Collaborative Research Infrastructure Strategy to provide nano and microfabrication facilities for Australian Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. Leech.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leech, P.W., Kibel, M.H. & Tanner, P. Modified sheet resistance and specific contact resistance of Ni-, Pt- and Ti-based contacts to n-type 3C-SiC. MRS Advances 6, 445–449 (2021). https://doi.org/10.1557/s43580-021-00072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00072-7

Navigation