Abstract
Herein, we demonstrate a method of intravascular catheter-based extrusion of hydrogels with in situ photomodulation to dynamically adjust the hydrogel properties utilizing a custom catheter setup. A novel UV-integrated microcatheter (luminal diameter 0.9 mm) was assembled and a suite of low-viscosity, shear thinning hydrogel precursors were formulated for delivery. We show that by modulating the precursor flow rate (up to 0.2 ml/min) as well as the UV power (0–37.5 mW), we can extrude hydrogels with viscosities dynamically varying from < 1 to 584 Pa s. To demonstrate the initial utility of this system, we successfully performed embolization of a saccular aneurysm model (diameter ~ 12 mm) with a pulsatile vascular flow phantom. These findings yield direct application ideas in clinical therapeutics such as vascular embolization in a variety of disease states, including cerebral aneurysms, arteriovenous malformations, vascularized tumors, and hemorrhagic vessels.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
J.J. Leyon, T. Littlehales, B. Rangarajan, E.T. Hoey, A. Ganeshan, Endovascular embolization: review of currently available embolization agents. Curr. Probl. Diagn. Radiol. (2014). https://doi.org/10.1067/J.CPRADIOL.2013.10.003
H. Wang, X. Lv, C. Jiang, Y. Li, Z. Wu, K. Xu, Onyx migration in the endovascular management of intracranial dural arteriovenous fistulas. Interv. Neuroradiol. 15(3), 301 (2009). https://doi.org/10.1177/159101990901500307
J.N. Johnson, M. Elhammady, J. Post, J. Pasol, K. Ebersole, M.A. Aziz-Sultan, Optic pathway infarct after Onyx HD 500 aneurysm embolization: visual pathway ischemia from superior hypophyseal artery occlusion. BMJ Case Rep. (2013). https://doi.org/10.1136/bcr-2013-010968
I.Y.L. Tan, R.F. Agid, R.A. Willinsky, Recanalization rates after endovascular coil embolization in a cohort of matched ruptured and unruptured cerebral aneurysms. Interv. Neuroradiol. 17(1), 27–35 (2011). https://doi.org/10.1177/159101991101700106
G.L. Magoufis, T.G. Vrachliotis, K.A. Stringaris, Covered stents to treat partial recanalization of onyx-occluded giant intracavernous carotid aneurysm. J. Endovasc. Ther. 11(6), 742–746 (2004). https://doi.org/10.1583/03-1195R.1
A.M. Bauer, M.D. Bain, P.A. Rasmussen, Onyx resorbtion with AVM recanalization after complete AVM obliteration. Interv. Neuroradiol. 21(3), 351 (2015). https://doi.org/10.1177/1591019915581985
J.C. Chaloupka, D.C. Huddle, J. Alderman, S. Fink, R. Hammond, H.V. Vinters, A reexamination of the angiotoxicity of superselective injection of DMSO in the swine rete embolization model. Am. J. Neuroradiol. 110(5), 773 (1999)
I. Tawil, A.P. Carlson, C.L. Taylor, Acute respiratory distress syndrome after onyx embolization of arteriovenous malformation. Crit. Care Res. Pract. 2011, 1–5 (2011). https://doi.org/10.1155/2011/918185
Q.V. Nguyen, D.P. Huynh, J.H. Park, D.S. Lee, Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur. Polym. J. 72, 602–619 (2015). https://doi.org/10.1016/J.EURPOLYMJ.2015.03.016
J.-A. Yang, J. Yeom, B.W. Hwang, A.S. Hoffman, S.K. Hahn, In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci. 39(12), 1973–1986 (2014). https://doi.org/10.1016/J.PROGPOLYMSCI.2014.07.006
A.A. Thorpe et al., Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomater. 54, 212–226 (2017). https://doi.org/10.1016/J.ACTBIO.2017.03.010
L. Zhao et al., pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int. J. Pharm. 410(1–2), 83–91 (2011). https://doi.org/10.1016/J.IJPHARM.2011.03.034
M. Guvendiren, H.D. Lu, J.A. Burdick, Shear-thinning hydrogels for biomedical applications. Soft Matter 8(2), 260–272 (2012). https://doi.org/10.1039/C1SM06513K
K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015). https://doi.org/10.1016/J.BIOMATERIALS.2015.08.045
C. Canstein et al., 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn. Reson. Med. 59(3), 535–546 (2008). https://doi.org/10.1002/mrm.21331
L. Zarrinkoob, K. Ambarki, A. Wåhlin, R. Birgander, A. Eklund, J. Malm, Blood flow distribution in cerebral arteries. J. Cereb. Blood Flow Metab. 35(4), 648 (2015). https://doi.org/10.1038/JCBFM.2014.241
B. Vuong et al., Evaluation of flow velocities after carotid artery stenting through split spectrum Doppler optical coherence tomography and computational fluid dynamics modeling. Biomed. Opt. Express 5(12), 4405 (2014). https://doi.org/10.1364/BOE.5.004405
J.H. Lee, R.K. Prud’homme, I.A. Aksay, Cure depth in photopolymerization: experiments and theory. J. Mater. Res. 16(12), 3536–3544 (2001). https://doi.org/10.1557/JMR.2001.0485
C. Sun et al., In vivo feasibility of endovascular Doppler optical coherence tomography. Biomed. Opt. Express 3(10), 2600 (2012). https://doi.org/10.1364/BOE.3.002600
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Dobashi, Y., Ku, J.C., Pasarikovski, C. et al. Dynamically tunable intravascular catheter delivery of hydrogels for endovascular embolization. MRS Advances 6, 66–71 (2021). https://doi.org/10.1557/s43580-021-00047-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-021-00047-8