Skip to main content
Log in

Dynamically tunable intravascular catheter delivery of hydrogels for endovascular embolization

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Herein, we demonstrate a method of intravascular catheter-based extrusion of hydrogels with in situ photomodulation to dynamically adjust the hydrogel properties utilizing a custom catheter setup. A novel UV-integrated microcatheter (luminal diameter 0.9 mm) was assembled and a suite of low-viscosity, shear thinning hydrogel precursors were formulated for delivery. We show that by modulating the precursor flow rate (up to 0.2 ml/min) as well as the UV power (0–37.5 mW), we can extrude hydrogels with viscosities dynamically varying from < 1 to 584 Pa s. To demonstrate the initial utility of this system, we successfully performed embolization of a saccular aneurysm model (diameter ~ 12 mm) with a pulsatile vascular flow phantom. These findings yield direct application ideas in clinical therapeutics such as vascular embolization in a variety of disease states, including cerebral aneurysms, arteriovenous malformations, vascularized tumors, and hemorrhagic vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J.J. Leyon, T. Littlehales, B. Rangarajan, E.T. Hoey, A. Ganeshan, Endovascular embolization: review of currently available embolization agents. Curr. Probl. Diagn. Radiol. (2014). https://doi.org/10.1067/J.CPRADIOL.2013.10.003

    Article  Google Scholar 

  2. H. Wang, X. Lv, C. Jiang, Y. Li, Z. Wu, K. Xu, Onyx migration in the endovascular management of intracranial dural arteriovenous fistulas. Interv. Neuroradiol. 15(3), 301 (2009). https://doi.org/10.1177/159101990901500307

    Article  CAS  Google Scholar 

  3. J.N. Johnson, M. Elhammady, J. Post, J. Pasol, K. Ebersole, M.A. Aziz-Sultan, Optic pathway infarct after Onyx HD 500 aneurysm embolization: visual pathway ischemia from superior hypophyseal artery occlusion. BMJ Case Rep. (2013). https://doi.org/10.1136/bcr-2013-010968

    Article  Google Scholar 

  4. I.Y.L. Tan, R.F. Agid, R.A. Willinsky, Recanalization rates after endovascular coil embolization in a cohort of matched ruptured and unruptured cerebral aneurysms. Interv. Neuroradiol. 17(1), 27–35 (2011). https://doi.org/10.1177/159101991101700106

    Article  CAS  Google Scholar 

  5. G.L. Magoufis, T.G. Vrachliotis, K.A. Stringaris, Covered stents to treat partial recanalization of onyx-occluded giant intracavernous carotid aneurysm. J. Endovasc. Ther. 11(6), 742–746 (2004). https://doi.org/10.1583/03-1195R.1

    Article  Google Scholar 

  6. A.M. Bauer, M.D. Bain, P.A. Rasmussen, Onyx resorbtion with AVM recanalization after complete AVM obliteration. Interv. Neuroradiol. 21(3), 351 (2015). https://doi.org/10.1177/1591019915581985

    Article  Google Scholar 

  7. J.C. Chaloupka, D.C. Huddle, J. Alderman, S. Fink, R. Hammond, H.V. Vinters, A reexamination of the angiotoxicity of superselective injection of DMSO in the swine rete embolization model. Am. J. Neuroradiol. 110(5), 773 (1999)

    Google Scholar 

  8. I. Tawil, A.P. Carlson, C.L. Taylor, Acute respiratory distress syndrome after onyx embolization of arteriovenous malformation. Crit. Care Res. Pract. 2011, 1–5 (2011). https://doi.org/10.1155/2011/918185

    Article  Google Scholar 

  9. Q.V. Nguyen, D.P. Huynh, J.H. Park, D.S. Lee, Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur. Polym. J. 72, 602–619 (2015). https://doi.org/10.1016/J.EURPOLYMJ.2015.03.016

    Article  CAS  Google Scholar 

  10. J.-A. Yang, J. Yeom, B.W. Hwang, A.S. Hoffman, S.K. Hahn, In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci. 39(12), 1973–1986 (2014). https://doi.org/10.1016/J.PROGPOLYMSCI.2014.07.006

    Article  CAS  Google Scholar 

  11. A.A. Thorpe et al., Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomater. 54, 212–226 (2017). https://doi.org/10.1016/J.ACTBIO.2017.03.010

    Article  CAS  Google Scholar 

  12. L. Zhao et al., pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int. J. Pharm. 410(1–2), 83–91 (2011). https://doi.org/10.1016/J.IJPHARM.2011.03.034

    Article  CAS  Google Scholar 

  13. M. Guvendiren, H.D. Lu, J.A. Burdick, Shear-thinning hydrogels for biomedical applications. Soft Matter 8(2), 260–272 (2012). https://doi.org/10.1039/C1SM06513K

    Article  CAS  Google Scholar 

  14. K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015). https://doi.org/10.1016/J.BIOMATERIALS.2015.08.045

    Article  CAS  Google Scholar 

  15. C. Canstein et al., 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn. Reson. Med. 59(3), 535–546 (2008). https://doi.org/10.1002/mrm.21331

    Article  CAS  Google Scholar 

  16. L. Zarrinkoob, K. Ambarki, A. Wåhlin, R. Birgander, A. Eklund, J. Malm, Blood flow distribution in cerebral arteries. J. Cereb. Blood Flow Metab. 35(4), 648 (2015). https://doi.org/10.1038/JCBFM.2014.241

    Article  Google Scholar 

  17. B. Vuong et al., Evaluation of flow velocities after carotid artery stenting through split spectrum Doppler optical coherence tomography and computational fluid dynamics modeling. Biomed. Opt. Express 5(12), 4405 (2014). https://doi.org/10.1364/BOE.5.004405

    Article  Google Scholar 

  18. J.H. Lee, R.K. Prud’homme, I.A. Aksay, Cure depth in photopolymerization: experiments and theory. J. Mater. Res. 16(12), 3536–3544 (2001). https://doi.org/10.1557/JMR.2001.0485

    Article  CAS  Google Scholar 

  19. C. Sun et al., In vivo feasibility of endovascular Doppler optical coherence tomography. Biomed. Opt. Express 3(10), 2600 (2012). https://doi.org/10.1364/BOE.3.002600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor X. D. Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobashi, Y., Ku, J.C., Pasarikovski, C. et al. Dynamically tunable intravascular catheter delivery of hydrogels for endovascular embolization. MRS Advances 6, 66–71 (2021). https://doi.org/10.1557/s43580-021-00047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00047-8

Navigation