Skip to main content
Log in

Experimental and calculation approach for phase equilibria among γ/TCP/GCP oP6 phases at elevated temperatures

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Phase equilibria among the A1 (γ-fcc), Ni2Cr (oP6) and TCP phases in Ni–Cr–Mo system at temperatures above 973 K have been investigated, to evaluate the possibility for utilizing a novel microstructure design principle for Ni-based alloys having TCP phase at grain boundaries and GCP phase other than γ′ phase within grain interiors. Unlike the phase diagram calculated based on commercially available thermodynamic databases, the Ni2Cr phase in the binary system becomes stabilized by the presence of Mo solute atoms in solution at temperatures greater than 200 K, and the Ni2(Cr, Mo)-oP6 single-phase region exists as an island at and around the composition of Ni–20Cr–15Mo (at.%) between temperatures of 973 K and 1073 K. Two distinct three-phase regions of γ + oP6 + P and γ + oP6 + TCP NiMo (oP56) were found to exist around the oP6 single-phase region. In the calculation the isothermal section is reproduced by thermodynamic calculation, using a regular solution model for liquid, fcc and bcc phases, and sublattice model for compounds. The novel phase transformations and microstructures occurring in this class of alloys may potentially lead to advances in the design of novel Ni-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Watanabe, Y. Chiba, T. Kunou, Alloy design of solid solution strengthened nickel-base superalloy. Tetsu-to-Hagane 61(10), 2405–2414 (1975)

    Article  CAS  Google Scholar 

  2. N. Yukawa, New PHACOMP for superalloys. Denki-Seiko 54(4), 275–287 (1983)

    Article  CAS  Google Scholar 

  3. B. Seiser, R. Drautz, D.G. Pettifor, TCP phase predictions in Ni-based superalloys: structure maps revisited. Acta Mater. 50(2), 749–763 (2011)

    Article  Google Scholar 

  4. M. Takeyama, Ph.D. theses, Tokyo Institute of Technology (1986)

  5. M. Takeyama et al., Effect of grain boundary precipitates on high temperature creep properties of Ni-20Cr-Nb-W alloys. Tetsu-to-Hagané 72(10), 1605–1612 (1986)

    Article  CAS  Google Scholar 

  6. T. Matsuo, M. Kikuchi, M. Takeyama, Strengthening mechanisms of Ni-Cr-W based superalloys for very high temperature gas cooled reactors, in Proc. 1st Inter. Conf. Heat-Resistant Materials, pp. 601–614 (1991)

  7. M. Takeyama, Fundamentals of physical metallurgy for high-temperature materials—microstructure control and design. Paper presented at the ISIJ 194th and 195th Nishiyama Memorial Lecture, Tokyo and Osaka, June, pp. 1–23 (2008)

  8. I. Tarigan, et al., Novel concept of creep strengthening mechanism using grain boundary Fe2Nb Laves phase in austenitic heat resistant steel, in: Materials Research Society Symp. Proc., vol. 1295, pp. 317–322 (2011)

  9. Y. Hasebe, K. Hashimoto, M. Takeyama, Phase equilibria among γ-Fe/Fe2Nb(TCP)/Ni3Nb(GCP) Phases in Fe-Ni-Nb ternary system at elevated temperatures. J. Jpn. Inst. Met. 75(4), 265–273 (2011)

    Article  CAS  Google Scholar 

  10. M. Takeyama, Recent trend on materials development for A-USC power plants. Denki-Seiko 83(1), 27–33 (2012)

    CAS  Google Scholar 

  11. M. Takeyama, et al., Creep of the novel austenitic heat resistant steels strengthened by Fe2Nb Laves phase under steam condition, in Proc. 3rd International ECCC Conf., Rome, Italy, pp. 703–710 (2014)

  12. M. Takeyama, Mater. Jpn. 56(3), 145–150 (2017)

    Article  CAS  Google Scholar 

  13. M.K. Miller et al., Microstructural characterization of Haynes® 242TM alloy. Mater. Sci. Eng. A 327, 89–93 (2002)

    Article  Google Scholar 

  14. A. Ul-Hamid et al., Cyclic oxidation behaviour of a Ni-Mo-Cr alloy at 800°C. Anti-Corros. Methods Mater. 51, 339–347 (2004)

    Article  CAS  Google Scholar 

  15. S. Dymek et al., Influence of plastic deformation and prolonged ageing time on microstructure of a Haynes 242 alloy. J. Microsc. 224, 24–26 (2006)

    Article  CAS  Google Scholar 

  16. A. Ul-Hamid et al., Evolution of oxide scale on a Ni-Mo-Cr alloy at 900 °C. Mater. Charact. 58, 13–23 (2007)

    Article  CAS  Google Scholar 

  17. S. Dymek et al., Microstructure stability and mechanical properties of an age-hardenable Ni-Mo-Cr alloy subjected to long-term exposure to elevated temperature. Mater. Charact. 61, 769–777 (2010)

    Article  CAS  Google Scholar 

  18. M. Fahrmann, S.K. Srivastava, Pike LM (2012) Development of a new 760°C (1400°F) capable low thermal expansion alloy, in Superalloys 2012. ed. by E.S. Huron et al. (TMS, Warrendale, PA, 2012), pp. 769–777

    Chapter  Google Scholar 

  19. M.G. Fahrmann, S.K. Srivastava, L.M. Pike, Haynes 244 alloy—a new 760 °C capable low thermal expansion alloy, in MATEC Web of Conferences 14, p. 17004 (2014). https://doi.org/10.1051/matecconf/20141417004

  20. P. Nash (ed.), Phase Diagram of Binary Nickel Alloys (ASM International, Materials Park, 1991)

    Google Scholar 

  21. P.E.A. Turchi, L. Kaufman, Z.K. Liu, Modeling of Ni-Cr-Mo based alloys: part I—phase stability. CALPHAD 30, 70–87 (2006)

    Article  CAS  Google Scholar 

  22. S. Rideout et al., Intermediate phases in ternary alloy systems of transition elements. JOM 3, 872–876 (1951)

    Article  CAS  Google Scholar 

  23. D.S. Bloom, N.J. Grant, An investigation of the systems formed by chromium, molybdenum, and nickel. JOM 6, 261–268 (1954)

    Article  CAS  Google Scholar 

  24. M. Raghavan et al., Determination of isothermal sections of nickel rich portion of Ni-Cr-Mo system by analytical electron microscopy. Metall. Mater. Trans. A 15A, 783–792 (1984)

    Article  CAS  Google Scholar 

  25. S.H. Zhou et al., First-principles calculations and thermodynamic modeling of the Ni-Mo system. Mater. Sci. Eng. A 397(1–2), 288–296 (2005)

    Article  Google Scholar 

  26. R. Nagashima, et al., Phase equilibria among A1/TCP/GCP phases and microstructure formation in Ni-Cr-Mo system at elevated temperatures, in Superalloys 2020 Proc., pp. 131–141 (2019)

  27. K. Frisk, P. Gustafson, An assessment of the Cr-Mo-W system. CALPHAD 12(3), 247–254 (1988)

    Article  CAS  Google Scholar 

  28. P. Gustafson, A thermodynamic evaluation of the Cr-Ni-W system. CALPHAD 12(3), 277–292 (1988)

    Article  CAS  Google Scholar 

  29. K. Frisk, A Study of the Phase Equilibria in the Cr-Mo-Ni System. TRITA-MAC-0429 (1990)

  30. K. Frisk, A thermodynamic evaluation of the Mo-Ni system. CALPHAD 14(3), 311–320 (1990)

    Article  CAS  Google Scholar 

  31. B.-J. Lee, On the stability of Cr-carbides. CALPHAD 16, 121–149 (1992)

    Article  CAS  Google Scholar 

  32. C. Qiu, Thermodynamic analysis and calculation of the Cr-Mo-C system. J. Alloys Compd. 199, 53–59 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Nagashima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagashima, R., Nakashima, H. & Takeyama, M. Experimental and calculation approach for phase equilibria among γ/TCP/GCP oP6 phases at elevated temperatures. MRS Advances 6, 187–194 (2021). https://doi.org/10.1557/s43580-021-00023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00023-2

Navigation