Skip to main content
Log in

In situ electron microscopy revealing dynamic structure–function relationship of heterogeneous catalyst

  • Early Career Distinguished Presenter Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) facilitates the direct observation of individual catalytic materials with atomic-level spatial resolution, offering crucial structural insights into catalyst performance. Furthermore, the recent integration of in situ analysis techniques with TEM has enabled the real-time monitoring of dynamic structural changes in catalysts within a reaction environment over time, yielding novel findings that are challenging to obtain through conventional bulk characterization methods. In this prospective, we explore advanced TEM technologies employed for precisely examining the structure of a catalyst surface, emphasizing the dynamic chemistry inherent in heterogeneous catalysis, exclusively validated through in situ TEM. Finally, we propose future directions for in situ TEM studies on heterogeneous catalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All data necessary for the prospective are provided in this manuscript.

References

  1. C.R.A. Catlow, Modern Developments in Catalysis (World Scientific, Singapore, 2017)

    Google Scholar 

  2. R. Schlögl, Heterogeneous catalysis. Angew. Chem. Int. Ed. 54, 3465–3520 (2015)

    Article  Google Scholar 

  3. B. Zhu, J. Meng, W. Yuan, X. Zhang, H. Yang, Y. Wang, Y. Gao, Reshaping of metal nanoparticles under reaction conditions. Angew. Chem. Int. Ed. 59, 2171–2180 (2020)

    Article  CAS  Google Scholar 

  4. N. Kamiuchi, K. Sun, R. Aso, M. Tane, T. Tamaoka, H. Yoshida, S. Takeda, Self-activated surface dynamics in gold catalysts under reaction environments. Nat. Commun. 9(1), 2060 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Y. Kim, T.Y. Kim, C.K. Song, K.R. Lee, S. Bae, H. Park, D. Yun, Y.S. Yun, I. Nam, J. Park, Redox-driven restructuring of lithium molybdenum oxide nanoclusters boosts the selective oxidation of methane. Nano Energy 82, 105704 (2021)

    Article  CAS  Google Scholar 

  6. U. Petek, F. Ruiz-Zepeda, M. Bele, M. Gaberšček, Nanoparticles and single atoms in commercial carbon-supported platinum-group metal catalysts. Catalysts 9, 134 (2019)

    Article  Google Scholar 

  7. H. Miyata, W. Kubo, A. Sakai, Y. Ishida, T. Noma, M. Watanabe, A. Bendavid, P.J. Martin, Epitaxial-like growth of anisotropic mesostructure on an anisotropic surface of an oblique nanocolumnar structure. J. Am. Chem. Soc. 132, 9414 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. J. Li, Z. Liu, D.A. Cullen, W. Hu, J. Huang, L. Yao, Z. Peng, P. Liao, R. Wang, Distribution and valence state of Ru species on CeO2 supports: Support shape effect and its influence on CO oxidation. ACS Catal. 9, 11088–11103 (2019)

    Article  CAS  Google Scholar 

  9. P. Mäki-Arvela, D.Y. Murzin, Effect of catalyst synthesis parameters on the metal particle size. Appl. Catal. A: Gen. 451, 251–281 (2013)

    Article  Google Scholar 

  10. X. Zhang, S. Han, B. Zhu, G. Zhang, X. Li, Y. Gao, Z. Wu, B. Yang, Y. Liu, W. Baaziz, Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020)

    Article  CAS  Google Scholar 

  11. S. Zafeiratos, S. Piccinin, D. Teschner, Alloys in catalysis: Phase separation and surface segregation phenomena in response to the reactive environment. Catal. Sci. Technol. 2, 1787 (2012)

    Article  CAS  Google Scholar 

  12. D.S. Su, B. Zhang, R. Schlögl, Electron microscopy of solid catalysts transforming from a challenge to a toolbox. Chem. Rev. 115, 2818 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. K.W. Urban, Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Kim, J. Sung, S. Kang, J. Lee, M.-H. Kang, S. Hwang, H. Park, J. Kim, Y. Kim, E. Lee, Uniform synthesis of palladium species confined in a small-pore zeolite via full ion-exchange investigated by cryogenic electron microscopy. J. Mater. Chem. A 9, 19796 (2021)

    Article  CAS  Google Scholar 

  15. H. Friedrich, P.E. De Jongh, A.J. Verkleij, K.P. De Jong, Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 109, 1613 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. J. Miao, P. Ercius, S.J. Billinge, Atomic electron tomography: 3D structures without crystals. Science (2016). https://doi.org/10.1126/science.aaf2157

    Article  PubMed  PubMed Central  Google Scholar 

  17. C.-C. Chen, C. Zhu, E.R. White, C.-Y. Chiu, M. Scott, B. Regan, L.D. Marks, Y. Huang, J. Miao, Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. M.L. Taheri, E.A. Stach, I. Arslan, P.A. Crozier, B.C. Kabius, T. LaGrange, A.M. Minor, S. Takeda, M. Tanase, J.B. Wagner, Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Tang, W. Yuan, Y. Ou, G. Li, R. You, S. Li, H. Yang, Z. Zhang, Y. Wang, Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: A review. ACS Catal. 10, 14419 (2020)

    Article  CAS  Google Scholar 

  20. B. He, Y. Zhang, X. Liu, L. Chen, In-situ transmission electron microscope techniques for heterogeneous catalysis. ChemCatChem 12, 1853 (2020)

    Article  CAS  Google Scholar 

  21. F. Ye, M. Xu, S. Dai, P. Tieu, X. Ren, X. Pan, In situ tem studies of catalysts using windowed gas cells. Catalysts 10, 779 (2020)

    Article  CAS  Google Scholar 

  22. M. Ojeda, E. Iglesia, Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures. Angew. Chem. 121, 4894 (2009)

    Article  Google Scholar 

  23. A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. H. Tang, Y. Su, B. Zhang, A.F. Lee, M.A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, e1700231 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Y. Zhang, J. Zhang, B. Zhang, R. Si, B. Han, F. Hong, Y. Niu, L. Sun, L. Li, B. Qiao, Boosting the catalysis of gold by O2 activation at Au–SiO2 interface. Nat. Commun. 11, 1 (2020)

    Google Scholar 

  26. N. Mimura, N. Hiyoshi, T. Fujitani, F. Dumeignil, Microscope analysis of Au–Pd/TiO2 glycerol oxidation catalysts prepared by deposition–precipitation method. Catal. Lett. 144, 2167 (2014)

    Article  CAS  Google Scholar 

  27. T. Nilsson Pingel, M. Jørgensen, A.B. Yankovich, H. Grönbeck, E. Olsson, Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-05055-1

    Article  CAS  Google Scholar 

  28. N. De Jonge, F.M. Ross, Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695 (2011)

    Article  PubMed  Google Scholar 

  29. L. Liu, E. Nakouzi, M.L. Sushko, G.K. Schenter, C.J. Mundy, J. Chun, J.J. De Yoreo, Connecting energetics to dynamics in particle growth by oriented attachment using real-time observations. Nat. Commun. 11, 1 (2020)

    CAS  Google Scholar 

  30. G.-Z. Zhu, S. Prabhudev, J. Yang, C.M. Gabardo, G.A. Botton, L. Soleymani, In situ liquid cell TEM study of morphological evolution and degradation of Pt–Fe nanocatalysts during potential cycling. J. Phys. Chem. C 118, 22111 (2014)

    Article  CAS  Google Scholar 

  31. J. Sung, B.K. Choi, B. Kim, B.H. Kim, J. Kim, D. Lee, S. Kim, K. Kang, T. Hyeon, J. Park, Redox-sensitive facet dependency in etching of ceria nanocrystals directly observed by liquid cell TEM. J. Am. Chem. Soc. 141, 18395 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. J. Park, H. Elmlund, P. Ercius, J.M. Yuk, D.T. Limmer, Q. Chen, K. Kim, S.H. Han, D.A. Weitz, A. Zettl, 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. B.H. Kim, J. Heo, S. Kim, C.F. Reboul, H. Chun, D. Kang, H. Bae, H. Hyun, J. Lim, H. Lee, Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 368, 60 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. S. Kim, J. Kwag, C. Machello, S. Kang, J. Heo, C.F. Reboul, D. Kang, S. Kang, S. Shim, S.-J. Park, Correlating 3D surface atomic structure and catalytic activities of Pt nanocrystals. Nano Lett. 21, 1175 (2021)

    Article  CAS  PubMed  Google Scholar 

  36. N. Clark, D.J. Kelly, M. Zhou, Y.-C. Zou, C.W. Myung, D.G. Hopkinson, C. Schran, A. Michaelides, R. Gorbachev, S.J. Haigh, Tracking single adatoms in liquid in a transmission electron microscope. Nature 609, 942 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. J. Kim, A. Park, J. Kim, S.J. Kwak, J.Y. Lee, D. Lee, S. Kim, B.K. Choi, S. Kim, J. Kwag, Observation of H2 evolution and electrolyte diffusion on MoS2 monolayer by in situ liquid-phase transmission electron microscopy. Adv. Mater. 34, 2206066 (2022)

    Article  CAS  Google Scholar 

  38. X. Wang, K. Klingan, M. Klingenhof, T. Möller, J. Ferreira de Araújo, I. Martens, A. Bagger, S. Jiang, J. Rossmeisl, H. Dau, Morphology and mechanism of highly selective Cu (II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 1 (2021)

    Google Scholar 

  39. P. Grosse, A. Yoon, C. Rettenmaier, A. Herzog, S.W. Chee, B. Roldan Cuenya, Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. commun. (2021). https://doi.org/10.1038/s41467-021-26743-5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Y. Li, D. Kim, S. Louisia, C. Xie, Q. Kong, S. Yu, T. Lin, S. Aloni, S.C. Fakra, P. Yang, Electrochemically scrambled nanocrystals are catalytically active for CO2-to-multicarbons. Proc. Natl. Acad. Sci. 117, 9194 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H.L. Xin, H. Zheng, In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett. 12, 1470 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. E. Boyes, P. Gai, Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219 (1997)

    Article  CAS  Google Scholar 

  43. P.L. Gai, E.D. Boyes, S. Helveg, P.L. Hansen, S. Giorgio, C.R. Henry, Atomic-resolution environmental transmission electron microscopy for probing gas–solid reactions in heterogeneous catalysis. MRS Bull. 32, 1044 (2007)

    Article  CAS  Google Scholar 

  44. H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Shimada, M. Haruta, S. Takeda, Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. T.W. Hansen, J.B. Wagner, Catalysts under controlled atmospheres in the transmission electron microscope. ACS Catal. 4, 1673 (2014)

    Article  CAS  Google Scholar 

  46. F. Wu, N. Yao, Advances in windowed gas cells for in-situ TEM studies. Nano Energy 13, 735 (2015)

    Article  CAS  Google Scholar 

  47. J. Jinschek, S. Helveg, Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. J.B. Wagner, P.L. Hansen, A.M. Molenbroek, H. Topsøe, B.S. Clausen, S. Helveg, In situ electron energy loss spectroscopy studies of gas-dependent metal-support interactions in Cu/ZnO catalysts. J. Phys. Chem. B 107, 7753 (2003)

    Article  CAS  Google Scholar 

  49. H.L. Xin, K. Niu, D.H. Alsem, H. Zheng, In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 19, 1558 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. H.L. Xin, S. Alayoglu, R. Tao, A. Genc, C.-M. Wang, L. Kovarik, E.A. Stach, L.-W. Wang, M. Salmeron, G.A. Somorjai, Revealing the atomic restructuring of Pt–Co nanoparticles. Nano Lett. 14, 3203 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Sa. Vendelbo, C.F. Elkjær, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B. Nelissen, R.V. Rijn, J. Creemer, Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. N. De Jonge, W.C. Bigelow, G.M. Veith, Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 10, 1028 (2010)

    Article  PubMed  Google Scholar 

  53. R. Lang, W. Xi, J.-C. Liu, Y.-T. Cui, T. Li, A.F. Lee, F. Chen, Y. Chen, L. Li, L. Li, Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  54. L. DeRita, J. Resasco, S. Dai, A. Boubnov, H.V. Thang, A.S. Hoffman, I. Ro, G.W. Graham, S.R. Bare, G. Pacchioni, Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746 (2019)

    Article  CAS  PubMed  Google Scholar 

  55. H. Jiang, Q. He, Y. Zhang, L. Song, Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 51, 2968 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. X. Liu, J. Meng, J. Zhu, M. Huang, B. Wen, R. Guo, L. Mai, Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 33, 2007344 (2021)

    Article  CAS  Google Scholar 

  57. J. Dou, Z. Sun, A.A. Opalade, N. Wang, W. Fu, F.F. Tao, Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 46, 2001 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham, S.R. Challa, G. Qi, S. Oh, M.H. Wiebenga, X.I. Pereira Hernández, Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. S. Wei, A. Li, J.-C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W.-C. Cheong, Y. Wang, L. Zheng, Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. S. Tauster, Strong metal-support interactions. Acc. Chem. Res. 20, 389 (1987)

    Article  CAS  Google Scholar 

  61. A. Beck, X. Huang, L. Artiglia, M. Zabilskiy, X. Wang, P. Rzepka, D. Palagin, M.-G. Willinger, J.A. van Bokhoven, The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  62. F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai, Reaction-driven restructuring of Rh–Pd and Pt–Pd core-shell nanoparticles. Science 322, 932 (2008)

    Article  CAS  PubMed  Google Scholar 

  63. X. He, Y. Wang, X. Zhang, M. Dong, G. Wang, B. Zhang, Y. Niu, S. Yao, X. He, H. Liu, Controllable in situ surface restructuring of Cu catalysts and remarkable enhancement of their catalytic activity. ACS Catal. 9, 2213 (2019)

    Article  CAS  Google Scholar 

  64. J. Dong, Q. Fu, H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, Reaction-induced strong metal–support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 142, 17167 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. L. Luo, Y. Nian, S. Wang, Z. Dong, Y. He, Y. Han, C. Wang, Real-time atomic-scale visualization of reversible copper surface activation during the CO oxidation reaction. Angew. Chem. 132, 2526 (2020)

    Article  Google Scholar 

  66. Z. Dong, Y. Nian, H. Liu, J. Chen, Y. Wang, S. Wang, J. Xu, Y. Han, L. Luo, Revealing synergetic structural activation of a CuAu surface during water–gas shift reaction. Proc. Natl. Acad. Sci. 119, e2120088119 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. C.J. Jacobsen, Boron nitride: a novel support for ruthenium-based ammonia synthesis catalysts. J. Catal. 200, 1 (2001)

    Article  CAS  Google Scholar 

  68. T.W. Hansen, J.B. Wagner, P.L. Hansen, S. Dahl, H. Topsøe, C.J. Jacobsen, Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001)

    Article  CAS  PubMed  Google Scholar 

  69. T.W. Hansen, A.T. DeLaRiva, S.R. Challa, A.K. Datye, Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720 (2013)

    Article  CAS  PubMed  Google Scholar 

  70. W. Yuan, D. Zhang, Y. Ou, K. Fang, B. Zhu, H. Yang, T.W. Hansen, J.B. Wagner, Z. Zhang, Y. Gao, Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem. 130, 17069 (2018)

    Article  Google Scholar 

  71. J. Lee, S. Kang, E. Lee, M. Kang, J. Sung, T.J. Kim, P. Christopher, J. Park, D.H. Kim, Aggregation of CeO2 particles with aligned grains drives sintering of Pt single atoms in Pt/CeO2 catalysts. J. Mater. Chem. A 10, 7029 (2022)

    Article  CAS  Google Scholar 

  72. R.T.K. Baker, M.A. Barber, R.J. Waite, P.S. Harris, F.S. Feates, Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. J. Catal. 26, 51 (1972)

    Article  CAS  Google Scholar 

  73. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426 (2004)

    Article  CAS  PubMed  Google Scholar 

  74. J. Wu, S. Helveg, S. Ullmann, Z.M. Peng, A.T. Bell, Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. J. Catal. 338, 295 (2016)

    Article  CAS  Google Scholar 

  75. V. Beermann, M.E. Holtz, E. Padgett, J.F. de Araujo, D.A. Muller, P. Strasser, Real-time imaging of activation and degradation of carbon supported octahedral Pt-Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. (2019). https://doi.org/10.1039/C9EE01185D

    Article  Google Scholar 

  76. J. Cao, A. Rinaldi, M. Plodinec, X. Huang, E. Willinger, A. Hammud, S. Hieke, S. Beeg, L. Gregoratti, C. Colbea, R. Schlogl, M. Antonietti, M. Greiner, M. Willinger, In situ observation of oscillatory redox dynamics of copper. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-17346-7

    Article  PubMed  PubMed Central  Google Scholar 

  77. L.L. Luo, Y. Nian, S.B. Wang, Z.J. Dong, Y. He, Y. Han, C.M. Wang, Real-time atomic-scale visualization of reversible copper surface activation during the CO oxidation reaction. Angew. Chem. Int. Edit. 59, 2505 (2020)

    Article  CAS  Google Scholar 

  78. P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053 (2002)

    Article  CAS  PubMed  Google Scholar 

  79. T. Uchiyama, H. Yoshida, Y. Kuwauchi, S. Ichikawa, S. Shimada, M. Haruta, S. Takeda, Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angew. Chem. Int. Edit. 50, 10157 (2011)

    Article  CAS  Google Scholar 

  80. S.B. Vendelbo, C.F. Elkjaer, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B.J. Nelissen, R. van Rijn, J.F. Creemer, P.J. Kooyman, S. Helveg, Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884 (2014)

    Article  CAS  PubMed  Google Scholar 

  81. M. Plodinec, H.C. Nerl, F. Girgsdies, R. Schlogl, T. Lunkenbein, Insights into chemical dynamics and their impact on the reactivity of Pt nanoparticles during CO oxidation by operando TEM. ACS Catal. 10, 3183 (2020)

    Article  CAS  Google Scholar 

  82. G. Sun, P. Sautet, Active site fluxional restructuring as a new paradigm in triggering reaction activity for nanocluster catalysis. Acc. Chem. Res. 54, 3841 (2021)

    Article  CAS  PubMed  Google Scholar 

  83. J.B. Wu, H. Shan, W.L. Chen, X. Gu, P. Tao, C.Y. Song, W. Shang, T. Deng, In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28, 9686 (2016)

    Article  CAS  PubMed  Google Scholar 

  84. B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238 (1995)

    Article  CAS  Google Scholar 

  85. H.E. Grenga, K.R. Lawless, Active-sites for heterogeneous catalysis. J. Appl. Phys. 43, 1508 (1972)

    Article  CAS  Google Scholar 

  86. Y. Zhou, C.C. Jin, Y. Li, W.J. Shen, Dynamic behavior of metal nanoparticles for catalysis. Nano Today 20, 101 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A2C2101871). This work was also supported by the Samsung Research Funding Center (SRFC) funded by Samsung Electronics (SRFC-MA2002-3). J.P. acknowledges the financial support from the Institute for Basic Science (IBS-R006-D1).

Author information

Authors and Affiliations

Authors

Contributions

C. K. Song and Y. Kim contributed equally. All the authors contributed to writing of the manuscript.

Corresponding author

Correspondence to Jungwon Park.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C.K., Kim, Y. & Park, J. In situ electron microscopy revealing dynamic structure–function relationship of heterogeneous catalyst. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00567-y

Keywords

Navigation