Skip to main content
Log in

Impact of Cu/W rate on thermal properties, crystal structure and microstructure of NiTiCuW shape memory alloys

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, the composition-dependent properties of a new type of NiTiCuW shape memory alloy were investigated. The martensite transformation temperature was measured by differential scanning calorimetry, crystal structure by XRD, microstructure analysis by microhardness measurement and scanning electron microscopy. The increase in Cu/W ratio in the composition decreased the transformation temperature below room temperature, and the alloys are in austenite phase at room temperature. X-ray results also supported the thermal measurement results. Moreover, a difference in the microhardness values of NiTiCuW alloys was observed, which exhibited martensite phase and austenite phase at room temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. Sharma, A. Sharma, K.K. Goyal, S. Gupta, S. Bahl, G.K. Sharma, Transformation temperature and corrosion behavior of porous NiTi and NiTiCu shape memory alloy. Mater. Today: Proc. 63, 215 (2022)

    CAS  Google Scholar 

  2. V. Sampath, R. Srinithi, S. Santosh, P.P. Sarangi, J.S. Fathima, The effect of quenching methods on transformation characteristics and microstructure of an NiTiCu shape memory alloy. Trans. Indian Inst. Met. 73, 1481 (2020)

    Article  CAS  Google Scholar 

  3. C. Balasubramaniyan, K. Rajkumar, S. Santosh, Fiber laser cutting of Cu–Zr added quaternary NiTi shape memory alloy: experimental investigation and optimization. Arab. J. Sci. Eng. 48, 3665 (2023)

    Article  CAS  Google Scholar 

  4. A.N. Alagha, S. Hussain, W. Zaki, Additive manufacturing of shape memory alloys: a review with emphasis on powder bed systems. Mater. Des. 204, 109654 (2021)

    Article  CAS  Google Scholar 

  5. E. Mazzer, M. da Silva, P. Gargarella, Revisiting Cu-based shape memory alloys: recent developments and new perspectives. J. Mater. Res. 37, 162 (2022)

    Article  CAS  Google Scholar 

  6. Z.-X. Zhang, J. Zhang, H. Wu, Y. Ji, D.D. Kumar, Iron-based shape memory alloys in construction: research, applications and opportunities. Materials 15, 1723 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Sampath, Influence of copper on the deformation behavior of NiTi shape memory alloys in isothermal compression. Mater. Today: Proc. 72, 2428 (2023)

    CAS  Google Scholar 

  8. C. Tatar, R. Acar, I.N. Qader, Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. Eur. Phys. J. Plus 135, 1 (2020)

    Google Scholar 

  9. M. Tang, Y. Zhang, S. Jiang, J. Yu, B. Yan, C. Zhao, B. Yan, Microstructural evolution and related mechanisms in NiTiCu shape memory alloy subjected local canning compression. Intermetallics 118, 106700 (2020)

    Article  CAS  Google Scholar 

  10. X. Zuo, W. Zhang, Y. Chen, J. Oliveira, Z. Zeng, Y. Li, Z. Luo, S. Ao, Wire-based directed energy deposition of NiTiTa shape memory alloys: microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties. Addit. Manuf. 59, 103115 (2022)

    CAS  Google Scholar 

  11. S. Zareie, A.S. Issa, R.J. Seethaler, A. Zabihollah, Recent advances in the applications of shape memory alloys in civil infrastructures: a review. Structures (2020). https://doi.org/10.1016/j.istruc.2020.05.058

    Article  Google Scholar 

  12. R. Qadir, S. Mohammed, K. Mediha, I. Qader, A review on NiTiCu shape memory alloys: manufacturing and characterizations. J. Phys. Chem. Funct. Mater. 4, 49 (2021)

    Google Scholar 

  13. A. Fabregat-Sanjuan, F. Ferrando, S. De la Flor, NiTiCu shape memory alloy characterization through microhardness tests. J. Mater. Eng. Perform. 23, 2498 (2014)

    Article  CAS  Google Scholar 

  14. C. Tatar, A.I. Haji, I.N. Qader, Heat treatment effects on microstructural and thermal properties of high Cu content NiTiCu shape memory alloy. Iranian J. Sci. Technol. Trans. A Sci. 45, 2219 (2021)

    Article  Google Scholar 

  15. S. Sampath, Influence of high temperature ternary and quaternary additions on the phase transformation and actuation fatigue characteristics of NiTi shape memory alloys. J. Therm. Anal. Calorim. 148, 13273 (2023)

    Article  CAS  Google Scholar 

  16. G.B. Van der Voet, T.I. Todorov, J.A. Centeno, W. Jonas, J. Ives, F.G. Mullick, Metals and health: a clinical toxicological perspective on tungsten and review of the literature. Mil. Med. 172, 1002 (2007)

    Article  PubMed  Google Scholar 

  17. X. Yang, Beneficiation studies of tungsten ores—a review. Miner. Eng. 125, 111 (2018)

    Article  CAS  Google Scholar 

  18. F. Villa, E. Villa, A. Nespoli, F. Passaretti, Internal friction parameter in shape memory alloys: correlation between thermomechanical conditions and damping properties in NiTi and NiTiCu at different temperatures. J. Mater. Eng. Perform. 30, 2605 (2021)

    Article  CAS  Google Scholar 

  19. S. Shiva, I. Palani, S. Mishra, C. Paul, L. Kukreja, Investigations on the influence of composition in the development of Ni–Ti shape memory alloy using laser based additive manufacturing. Opt. Laser Technol. 69, 44 (2015)

    Article  CAS  Google Scholar 

  20. T. Goryczka, J. Van Humbeeck, NiTiCu shape memory alloy produced by powder technology. J. Alloy Compd. 456, 194 (2008)

    Article  CAS  Google Scholar 

  21. W. Trehern, N. Hite, R. Ortiz-Ayala, K. Atli, D. Sharar, A. Wilson, R. Seede, A. Leff, I. Karaman, NiTiCu shape memory alloys with ultra-low phase transformation range as solid-state phase change materials. Acta Mater. 260, 119310 (2023)

    Article  CAS  Google Scholar 

  22. I. Kaya, Y. Özdemir, E. Kaya, M.E. Keskin, The heating–cooling rate effect on thermal properties of high nickel-rich NiTi shape memory alloy. J. Therm. Anal. Calorim. 139, 817 (2020)

    Article  CAS  Google Scholar 

  23. Ö. Bağ, S. Ergen, F. Yılmaz, U. Kölemen, Influence of Al content on transformation temperature and activation energy of Ti–V–Al high temperature shape memory alloys. Solid State Commun. 323, 114104 (2021)

    Article  Google Scholar 

  24. F. Dagdelen, Y. Aydogdu, Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs: transformation temperatures, microstructure and micro-hardness. J. Therm. Anal. Calorim. 136, 637 (2019)

    Article  CAS  Google Scholar 

  25. M. Karimzadeh, M. Aboutalebi, M. Salehi, S. Abbasi, M. Morakabati, Adjustment of aging temperature for reaching superelasticity in highly Ni-rich Ti-51.5 Ni NiTi shape memory alloy. Mater. Manuf. Process. 31, 1014 (2016)

    Article  CAS  Google Scholar 

  26. E.K. Al-Shakarchi, M.N. Makadsi, K.A. Essa, Effect of substrate temperature on the physical properties of Ni49.7Ti50.3 thin film microactuator. J. Korean Phys. Soc. 56, 1822 (2010)

    Article  CAS  Google Scholar 

  27. S.-F. Ou, B.-Y. Peng, Y.-C. Chen, M.-H. Tsai, Manufacturing and characterization of NiTi alloy with functional properties by selective laser melting. Metals 8, 342 (2018)

    Article  Google Scholar 

  28. Z. Lekston, E. Lagiewka, X-ray diffraction studies of NiTi shape memory alloys. Arch. Mater. Sci. Eng. 28 (2007)

  29. D. Gu, C. Ma, Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness. Virtual Phys. Prototyp. 16, S19–S38 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This article is a part of the current Master thesis study of Alev Taze.

Funding

This research study financial support provided by the Management Unit of the Scientific Research Projects of Firat University (FUBAP) (Project Number: FF.23.11).

Author information

Authors and Affiliations

Authors

Contributions

Cengiz Tatar: supervision, writing—review & editing. Alev TAZE, Mediha Kök: investigation, resources writing—original draft, visualization, writing—review & editing.

Corresponding author

Correspondence to Cengiz Tatar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatar, C., Taze, A. & Kök, M. Impact of Cu/W rate on thermal properties, crystal structure and microstructure of NiTiCuW shape memory alloys. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00565-0

Keywords

Navigation