Skip to main content
Log in

Photoluminescence mapping of laser-damaged β-Ga2O3

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Photoluminescence (PL) mapping was utilized to investigate damage in β-Ga2O3 epilayers induced by 1064 nm laser pulses. The intensity and position of the intrinsic UV band were determined and plotted as a false-color image. Two types of damage were identified: circular damage and damage cracks. Circular damage shows lower UV PL intensity than the surrounding material with color centers in a “halo” around the damaged region. Damage cracks are aligned with the a and c axes and show higher PL intensity than undamaged material. Defects in the as-grown material were revealed by shifts in the UV band energy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information.

References

  1. K. Zhang, Z. Xu, H. Wang, S. Zhang, B. Dong, Patterning the surface structure of transparent hard-brittle material β-Ga2O3 by ultrashort pulse laser. Ceram. Int. 48, 27650 (2022)

    Article  CAS  Google Scholar 

  2. T.-H. Dang, M. Konczykowski, H. Jaffrès, V.I. Safarov, H.-J. Drouhin, Modification of β-gallium oxide electronic properties by irradiation with high-energy electrons. J. Vac. Sci. Technol. A 40, 033416 (2022)

    Article  CAS  Google Scholar 

  3. C. Remple, J. Huso, M.H. Weber, J.S. McCloy, and M.D. McCluskey, Electron irradiation effects on the optical properties of Hf and Zn doped β-Ga2O3. J. Appl. Phys. (in press). https://doi.org/10.1063/5.0196824

  4. M. Peres, D.M. Esteves, B.M.S. Teixeira, J. Zanoni, L.C. Alves, E. Alves, L.F. Santos, X. Biquard, Z. Jia, W. Mu, J. Rodrigues, N.A. Sobolev, M.R. Correia, T. Monteiro, N. Ben Sedrine, K. Lorenz, Enhancing the luminescence yield of Cr3+ in β-Ga2O3 by proton irradiation. Appl. Phys. Lett. 120, 261904 (2022)

    Article  CAS  Google Scholar 

  5. R.M.F. Pourhashemi, M.T. Hardy, P.S. Hsu, K.M. Kelchner, J.S. Speck, S.P. DenBaars, S. Nakamura, Pulsed high-power AlGaN-cladding-free blue laser diodes on semipolar GaN substrates. Appl. Phys. Lett. 103, 151112 (2013)

    Article  Google Scholar 

  6. J.S. Sullivan, J.R. Stanley, Wide Bandgap extrinsic photoconductive switches. IEEE Trans. Plasma Sci. 36(5), 2528 (2008)

    Article  CAS  Google Scholar 

  7. L.F. Voss and A.M. Conway, Wide bandgap optical switch circuit breaker. US Patent No. 11,522,542 B2 (2022)

  8. J. Heebner, M. Borden, P. Miller, S. Hunter, K. Christensen, M. Scanlan, C. Haynam, P. Wegner, M. Hermann, G. Brunton, E. Tse, A. Awwal, N. Wong, L. Seppala, M. Franks, E. Marley, K. Williams, T. Budge, M. Henesian, C. Stolz, T. Suratwala, M. Monticelli, D. Walmer, S. Dixit, C. Widmayer, J. Wolfe, J. Bude, K. McCarty, J.M. DiNicola, Programmable beam spatial shaping system for the national ignition facility. Proc. SPIE 7916, 79160H (2011)

    Article  Google Scholar 

  9. M.J. Matthews, G. Guss, D.R. Drachenberg, J.A. Demuth, J.E. Heebner, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, Diode-based additive manufacturing of metals using an optically-addressable light valve. Opt. Exp. 25(10), 11788–11800 (2017)

    Article  CAS  Google Scholar 

  10. J.-H. Yoo, M.G. Menor, J.J. Adams, R.N. Raman, J.R.I. Lee, T.Y. Olson, N. Shen, J. Suh, S.G. Demos, J. Bude, S. Elhadj, Laser damage mechanisms in conductive widegap semiconductor films. Opt. Exp. 24, 17616 (2016)

    Article  CAS  Google Scholar 

  11. S. Elhadj, J.-H. Yoo, R.A. Negres, M.G. Menor, J.J. Adams, N. Shen, D.A. Cross, I.L. Bass, J.D. Bude, Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling. Optic. Mater. Exp. 7, 202 (2017)

    Article  CAS  Google Scholar 

  12. A. Bhattacharyya, C. Peterson, T. Itoh, S. Roy, J. Cooke, S. Rebollo, P. Ranga, B. Sensale-Rodriguez, S. Krishnamoorthy, Enhancing the electron mobility in Si-doped (010) β-Ga2O3 films with low-temperature buffer layers. APL Mater. 11, 021110 (2023)

    Article  CAS  Google Scholar 

  13. A. Bhattacharyya, P. Ranga, S. Roy, J. Ogle, L. Whittaker-Brooks, S. Krishnamoorthy, Low temperature homoepitaxy of (010) β-Ga2O3 by metalorganic vapor phase epitaxy: expanding the growth window. Appl. Phys. Lett. 117, 142102 (2020)

    Article  CAS  Google Scholar 

  14. O. Utezaa, B. Bussiѐre, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, M. Sentis, Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes. Appl. Surf. Sci. 254, 799 (2007)

    Article  Google Scholar 

  15. URL: https://spicatech.com/testing/laser-induced-damage/laser-damage-threshold/

  16. Y. Wang, P.T. Dickens, J.B. Varley, X. Ni, E. Lotubai, S. Sprawls, F. Liu, V. Lordi, S. Krishnamoorthy, S. Blair, K.G. Lynn, M. Scarpulla, B. Sensale-Rodriguez, Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence. Sci. Rep. 8(1), 18075 (2018). https://doi.org/10.1038/s41598-018-36676-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Park, I. An, Polarization errors associated with reflective objectives in a micro-spot spectroscopic ellipsometer. Jpn. J. Appl. Phys. 58, 058003 (2019)

    Article  CAS  Google Scholar 

  18. J.-H. Yoo, S. Rafique, A. Lange, H. Zhao, S. Elhadj, Lifetime laser damage performance of β-Ga2O3 for high power applications. APL Mater. 6, 036105 (2018)

    Article  Google Scholar 

  19. J. Cooke, P. Ranga, J. Jesenovec, J.S. McCloy, S. Krishnamoorthy, M.A. Scarpulla, B. Sensale-Rodriguez, Effect of extended defects on photoluminescence of gallium oxide and aluminum gallium oxide epitaxial films. Sci. Rep. 12, 3243 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M.D. McCluskey, Point defects in Ga2O3. J. Appl. Phys. 127, 101101 (2020)

    Article  CAS  Google Scholar 

  21. S. Gao, X. Yang, J. Cheng, X. Guo, R. Kang, Deformation and fracture behaviors of monocrystalline β-Ga2O3 characterized using indentation method and first-principles calculations. Mater Charact 200, 112920 (2023)

    Article  CAS  Google Scholar 

  22. H. Weman, B. Monemar, G.S. Oehrlein, S.J. Jeng, Strain-induced quantum confinement of carriers due to extended defects in silicon. Phys. Rev. B 42, 3109 (1990)

    Article  CAS  Google Scholar 

  23. P.D. Colbourne, D.T. Cassidy, Observation of dislocation stresses in InP using polarization-resolved photoluminescence. Appl. Phys. Lett. 61, 1174 (1992)

    Article  CAS  Google Scholar 

  24. R. Zhang, M. Lib, G. Wu, L. Li, Z. Zhang, K. Liang, W. Shen, Modulating electronic properties of β-Ga2O3 by strain engineering. Results Phys. 52, 106916 (2023)

    Article  Google Scholar 

  25. J. Cooke, P. Ranga, A. Bhattacharyya, X. Cheng, Y. Wang, S. Krishnamoorthy, M.A. Scarpulla, B. Sensale-Rodriguez, Sympetalous defects in metalorganic vapor phase epitaxy (MOVPE)-grown homoepitaxial β-Ga2O3 films. J. Vac. Sci. Technol. A 41, 013406 (2023)

    Article  CAS  Google Scholar 

  26. J. Witthoft, The mechanics of conchoidal fracture: a bibliographic note. Newslett. Lithic Technol. 3(3), 50 (1974)

    Google Scholar 

Download references

Funding

This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and partially supported by LLNL LDRD funding under project number 22-SI-003. M.D.M. acknowledges support by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award No. DE-FG02-07ER46386.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Semiconductor growth was performed by Arkka Bhattacharyya and Sriram Krishnamoorthy. Data collection and analysis were performed by Jesse Huso, Matthew D. McCluskey, and Clint D. Frye. The first draft of the manuscript was written by Matthew McCluskey and all authors contributed to the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Matthew D. McCluskey.

Ethics declarations

Conflict of interest

J.H. is an employee of Klar Scientific and M.D.M. owns equity in the company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1022 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huso, J., McCluskey, M.D., McCloy, J.S. et al. Photoluminescence mapping of laser-damaged β-Ga2O3. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00564-1

Navigation