Skip to main content
Log in

Indentation size effects in hardness of annealed NiB coatings

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nix–Gao’s factor (81/2) was replaced with (4.5Ct2) using variable constraint factor (Ct) for size-dependent analysis of crystalline coatings. Experimental investigations on annealed NiB coating (5 wt% boron) aimed at defense applications involved twelve Berkovich nanoindentation tests (displacements: 500, 1000, and 1500 nm; strain rates: 0.05, 0.1, 0.15, and 0.20 s−1). SEM and XRD analyzed cauliflower-type surface morphology and crystallinity. NiB coatings exhibited Intrinsic hardness (H0) of 9.65 ± 0.26 GPa, material characteristic length (h*) of 194.8 ± 10 nm, and elastic modulus (E) of 264 ± 10 GPa. Indentation size effects of these coatings attributed to increased geometrically necessary dislocation density.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data presented in this research are obtainable upon reasonable request from the corresponding author.

References

  1. Z.Y. Liang, G.M. Pharr, Decoupling indentation size and strain rate effects during nanoindentation: a case study in tungsten. J. Mech. Phys. Solids 165, 104935 (2022). https://doi.org/10.1016/j.jmps.2022.104935

    Article  CAS  Google Scholar 

  2. J. Wang, T. Volz, S.M. Weygand, R. Schwaiger, The indentation size effect of single-crystalline tungsten revisited. J. Mater. Res. 36, 2166–2175 (2021). https://doi.org/10.1557/s43578-021-00221-6

    Article  CAS  Google Scholar 

  3. I. Manika, J. Maniks, Size effects in micro- and nanoscale indentation. Acta Mater. 54, 2049–2056 (2006). https://doi.org/10.1016/j.actamat.2005.12.031

    Article  CAS  Google Scholar 

  4. W.D. Nix, Elastic and plastic properties of thin films on substrates: nanoindentation techniques. Mater. Sci. Eng. A 234–236, 37–44 (1997). https://doi.org/10.1016/S0921-5093(97)00176-7

    Article  Google Scholar 

  5. L. Lorenz, T. Chudoba, S. Makowski, M. Zawischa, F. Schaller, V. Weihnacht, Indentation modulus extrapolation and thickness estimation of ta-C coatings from nanoindentation. J. Mater. Sci. 56, 18740–18748 (2021). https://doi.org/10.1007/s10853-021-06448-2

    Article  CAS  Google Scholar 

  6. S.M. Han, R. Shah, R. Banerjee, G.B. Viswanathan, B.M. Clemens, W.D. Nix, Combinatorial studies of mechanical properties of Ti–Al thin films using nanoindentation. Acta Mater. 53, 2059–2067 (2005). https://doi.org/10.1016/j.actamat.2005.01.017

    Article  CAS  Google Scholar 

  7. S. Graça, R. Colaço, R. Vilar, Indentation size effect in nickel and cobalt laser clad coatings. Surf. Coat. Technol. 202, 538–548 (2007). https://doi.org/10.1016/j.surfcoat.2007.06.031

    Article  CAS  Google Scholar 

  8. D. Olasz, G. Sáfrán, N. Szász, G. Huhn, N.Q. Chinh, Indentation size effect in exceptionally hard AlCu thin films. Mater. Lett. 330, 133409 (2023). https://doi.org/10.1016/j.matlet.2022.133409

    Article  CAS  Google Scholar 

  9. M. Shell De Guzman, G. Neubauer, P. Flinn, W.D. Nix, The role of indentation depth on the measured hardness of materials. MRS Proc. 308, 613 (1993). https://doi.org/10.1557/PROC-308-613

    Article  CAS  Google Scholar 

  10. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  CAS  Google Scholar 

  11. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  CAS  Google Scholar 

  12. A. Kumaraswamy, V.V. Rao, Effect of temperature on constraint factor of IN718 under static indentation conditions. Mater. Sci. Eng. A 527, 6230–6234 (2010). https://doi.org/10.1016/j.msea.2010.06.034

    Article  CAS  Google Scholar 

  13. Y. Xu, D. Dini, Capturing the hardness of coating systems across the scales. Surf. Coat. Technol. 394, 125860 (2020). https://doi.org/10.1016/j.surfcoat.2020.125860

    Article  CAS  Google Scholar 

  14. V.S. Kathavate, B. Praveen Kumar, I. Singh, K. Eswar Prasad, Analysis of indentation size effect (ISE) in nanoindentation hardness in polycrystalline PMN-PT piezoceramics with different domain configurations. Ceram. Int. 47, 11870–11877 (2021). https://doi.org/10.1016/j.ceramint.2021.01.027

    Article  CAS  Google Scholar 

  15. S.J. Bull, Size effects in the mechanical response of nanoscale multilayer coatings on glass. Thin Solid Films 571, 290–295 (2014). https://doi.org/10.1016/j.tsf.2014.04.014

    Article  CAS  Google Scholar 

  16. V. Vitry, J. Hastir, A. Mégret, S. Yazdani, M. Yunacti, L. Bonin, Recent advances in electroless nickel-boron coatings. Surf. Coat. Technol. 429, 127937 (2022). https://doi.org/10.1016/j.surfcoat.2021.127937

    Article  CAS  Google Scholar 

  17. H. Algul, M. Uysal, A. Alp, A comparative study on morphological, mechanical and tribological properties of electroless NiP, NiB and NiBP coatings. Appl. Surf. Sci. Adv. 4, 100089 (2021). https://doi.org/10.1016/j.apsadv.2021.100089

    Article  Google Scholar 

  18. D. Gültekin, E. Duru, H. Akbulut, Improved wear behaviors of lead-free electroless Ni B and Ni-B/CeO2 composite coatings. Surf. Coat. Technol. 422, 127525 (2021). https://doi.org/10.1016/j.surfcoat.2021.127525

    Article  CAS  Google Scholar 

  19. A. Soni, A. Kumaraswamy, B. Praveen Kumar, Microstructural and tribomechanical characterization of NiB coated 4150 steel. J. Mater. Eng. Perform. (2024). https://doi.org/10.1007/s11665-023-09068-w

    Article  Google Scholar 

  20. V. Vitry, A.-F. Kanta, J. Dille, F. Delaunois, Structural state of electroless nickel–boron deposits (5wt% B): characterization by XRD and TEM. Surf. Coat. Technol. 206, 3444–3449 (2012). https://doi.org/10.1016/j.surfcoat.2012.02.003

    Article  CAS  Google Scholar 

  21. H. Seekala, L. Bathini, N.P. Wasekar, H. Krishnaswamy, P. Sudharshan Phani, A unified approach to quantify the material and geometrical effects in indentation size effect. J. Mater. Res. 38, 1740–1755 (2023). https://doi.org/10.1557/s43578-023-00927-9

    Article  CAS  Google Scholar 

  22. X. Hernot, C. Moussa, O. Bartier, Study of the concept of representative strain and constraint factor introduced by Vickers indentation. Mech. Mater. 68, 1–14 (2014). https://doi.org/10.1016/j.mechmat.2013.07.004

    Article  Google Scholar 

  23. C.-M. Sanchez-Camargo, A. Hor, C. Mabru, A robust inverse analysis method for elastoplastic behavior identification using the true geometry modeling of Berkovich indenter. Int. J. Mech. Sci. 171, 105370 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105370

    Article  Google Scholar 

  24. B. Merle, W.H. Higgins, G.M. Pharr, Extending the range of constant strain rate nanoindentation testing. J. Mater. Res. 35, 343–352 (2020). https://doi.org/10.1557/jmr.2019.408

    Article  CAS  Google Scholar 

  25. P. Sudharshan Phani, W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by load and depth sensing indentation: improvements to the technique based on continuous stiffness measurement. J. Mater. Res. 36, 2137–2153 (2021). https://doi.org/10.1557/s43578-021-00131-7

    Article  CAS  Google Scholar 

  26. X. Zhang, C. Zhang, Inconsistent nanoindentation test hardness using different Berkovich indenters. J. Market. Res. 25, 6198–6208 (2023). https://doi.org/10.1016/j.jmrt.2023.07.063

    Article  CAS  Google Scholar 

  27. B.L. Hackett, P. Sudharshan Phani, C.C. Walker, W.C. Oliver, G.M. Pharr, Advances in the measurement of hardness at high strain rates by nanoindentation. J. Mater. Res. 38, 1163–1177 (2023). https://doi.org/10.1557/s43578-023-00921-1

    Article  CAS  Google Scholar 

  28. S.J. Bull, Microstructure and indentation response of TiN coatings: the effect of measurement method. Thin Solid Films 688, 137452 (2019). https://doi.org/10.1016/j.tsf.2019.137452

    Article  CAS  Google Scholar 

  29. Y. Shelef, B. Bar-On, Size effects on the dynamic indentation modulus of films. Mech. Mater. 164, 104118 (2022). https://doi.org/10.1016/j.mechmat.2021.104118

    Article  Google Scholar 

  30. O. Franke, J.C. Trenkle, C.A. Schuh, Temperature dependence of the indentation size effect. J. Mater. Res. 25, 1225–1229 (2010). https://doi.org/10.1557/JMR.2010.0159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Director of ARDE and the Vice Chancellor of DIAT (DU) Pune, India, for granting permission to utilize the experimental facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Abhishek Soni: Conceptualization, theoretical analysis, sample preparation, experimentation, data analysis, first draft preparation. A. Kumaraswamy and Praveen Kumar B.: Conceptualization, sample preparation, review & editing of first draft, supervision. Nitin P. Wasekar and Krishna Valleti: Experimentation, data collection, review & editing of first draft.

Corresponding authors

Correspondence to A. Kumaraswamy or B. Praveen Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, A., Kumaraswamy, A., Praveen Kumar, B. et al. Indentation size effects in hardness of annealed NiB coatings. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00560-5

Keywords

Navigation