Skip to main content
Log in

SMILES-based machine learning enables the prediction of corrosion inhibition capacity

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study explores the efficacy of using a simplified molecular input line entry system (SMILES) as the sole feature, replacing quantum chemical properties (QCP), in predicting corrosion inhibition efficiency (CIE) for N-heterocyclic compounds. The gradient boosting regressor (GBR) model outperforms k-nearest neighbors (KNN), support vector regression (SVR), and other models. SMILES accurately predicts CIE for various datasets, demonstrating potential as a standalone feature. Results indicate a moderate correlation between SMILES representation and corrosion inhibition properties. The proposed method identifies novel N-heterocyclic derivatives with high CIE, suggesting its utility in discovering corrosion inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data will be shared on reasonable request.

References

  1. M. Akrom et al., DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract. Appl. Surf. Sci. 615, 156319 (2023). https://doi.org/10.1016/j.apsusc.2022.156319

    Article  CAS  Google Scholar 

  2. S. Chen, B. Zhu, X. Liang, Corrosion inhibition performance of coconut leaf extract as a green corrosion inhibitor for X65 steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 15(1), 1–15 (2020). https://doi.org/10.20964/2020.01.39

    Article  CAS  Google Scholar 

  3. M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds. Mater. Today Commun. 35, 106402 (2023). https://doi.org/10.1016/J.MTCOMM.2023.106402

    Article  CAS  Google Scholar 

  4. T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G.F. Shidik, H.K. Dipojono, A machine learning approach for corrosion small datasets. Npj Mater. Degrad. 7(1), 18 (2023). https://doi.org/10.1038/s41529-023-00336-7

    Article  Google Scholar 

  5. B. El Ibrahimi et al., Theoretical evaluation of some α-amino acids for corrosion inhibition of copper in acidic medium: DFT calculations, Monte Carlo simulations and QSPR studies. J. King Saud Univ. Sci. 32(1), 163–171 (2020). https://doi.org/10.1016/j.jksus.2018.04.004

    Article  Google Scholar 

  6. A. Roy, M.F.N. Taufique, H. Khakurel, R. Devanathan, D.D. Johnson, G. Balasubramanian, Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys. Npj Mater. Degrad. 6(1), 9 (2022). https://doi.org/10.1038/s41529-021-00208-y

    Article  Google Scholar 

  7. C.T. Ser, P. Žuvela, M.W. Wong, Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships. Appl. Surf. Sci. 512, 145612 (2020). https://doi.org/10.1016/j.apsusc.2020.145612

    Article  CAS  Google Scholar 

  8. R.L. Camacho-Mendoza, L. Feria, L.Á. Zárate-Hernández, J.G. Alvarado-Rodríguez, J. Cruz-Borbolla, New QSPR model for prediction of corrosion inhibition using conceptual density functional theory. J. Mol. Model 28(8), 238 (2022). https://doi.org/10.1007/s00894-022-05240-6

    Article  CAS  PubMed  Google Scholar 

  9. E.H. El Assiri et al., Development and validation of QSPR models for corrosion inhibition of carbon steel by some pyridazine derivatives in acidic medium. Heliyon 6(10), e05067 (2020). https://doi.org/10.1016/j.heliyon.2020.e05067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T.W. Quadri et al., Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors. Mater. Today Commun. 30, 103163 (2022). https://doi.org/10.1016/j.mtcomm.2022.103163

    Article  CAS  Google Scholar 

  11. T.W. Quadri et al., Predicting protection capacities of pyrimidine-based corrosion inhibitors for mild steel/HCl interface using linear and nonlinear QSPR models. J. Mol. Model. 28(9), 254 (2022). https://doi.org/10.1007/s00894-022-05245-1

    Article  CAS  PubMed  Google Scholar 

  12. A.H. Alamri, N. Alhazmi, Development of data driven machine learning models for the prediction and design of pyrimidine corrosion inhibitors. J. Saudi Chem. Soc. 26(6), 101536 (2022). https://doi.org/10.1016/j.jscs.2022.101536

    Article  CAS  Google Scholar 

  13. T.W. Quadri et al., Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: quantum chemical analysis and QSPR-ANN studies. Arab. J. Chem. 15(7), 103870 (2022). https://doi.org/10.1016/j.arabjc.2022.103870

    Article  CAS  Google Scholar 

  14. V. Saini, Machine learning prediction of empirical polarity using SMILES encoding of organic solvents. Mol. Divers. (2022). https://doi.org/10.1007/s11030-022-10559-6

    Article  PubMed  Google Scholar 

  15. X. Li, D. Fourches, SMILES pair encoding: a data-driven substructure tokenization algorithm for deep learning. J. Chem. Inf. Model. 61(4), 1560–1569 (2021). https://doi.org/10.1021/acs.jcim.0c01127

    Article  CAS  PubMed  Google Scholar 

  16. Y. Hou, S. Wang, B. Bai, H.C. StephenChan, S. Yuan, Accurate physical property predictions via deep learning. Molecules 27(5), 1668 (2022). https://doi.org/10.3390/molecules27051668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Galati et al., VenomPred: a machine learning based platform for molecular toxicity predictions. Int. J. Mol. Sci. 23(4), 2105 (2022). https://doi.org/10.3390/ijms23042105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors. Physica Scripta 99(3), 036006 (2024). https://doi.org/10.1088/1402-4896/ad28a9

    Article  Google Scholar 

  19. M. Akrom, S. Rustad, H.K. Dipojono, Prediction of anti-corrosion performance of new triazole derivatives via machine learning. Comp. and Theo. Chem. 1236, 114599 (2024). https://doi.org/10.1016/j.comptc.2024.114599

    Article  CAS  Google Scholar 

  20. P. Gedeck, B. Rohde, C. Bartels, QSAR—how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets. J. Chem. Inf. Model. 46(5), 1924–1936 (2006). https://doi.org/10.1021/ci050413p

    Article  CAS  PubMed  Google Scholar 

  21. G. Landrum, RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. http://rdkit.sourceforge.net

  22. M. Akrom, S. Rustad, A.G. Saputro, H.K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors. Comput. Theoret. Chem. 1229, 114307 (2023). https://doi.org/10.1016/J.COMPTC.2023.114307

    Article  CAS  Google Scholar 

  23. A. Botchkarev, A new typology design of performance metrics to measure errors in machine learning regression algorithms. Interdiscip. J. Inf. Knowl. Manag. 14, 45–76 (2019). https://doi.org/10.28945/4184

    Article  Google Scholar 

  24. X. Yuan, Z. Ge, Z. Song, Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression. Chemom. Intell. Lab. Syst. 138, 97–109 (2014). https://doi.org/10.1016/j.chemolab.2014.07.013

    Article  CAS  Google Scholar 

  25. A. Natekin, A. Knoll, Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013). https://doi.org/10.3389/fnbot.2013.00021

    Article  PubMed  PubMed Central  Google Scholar 

  26. Z. Zhang, Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. (2016). https://doi.org/10.21037/atm.2016.03.37

    Article  PubMed  PubMed Central  Google Scholar 

  27. A.J. Smola, B. Schölkopf, S. Schölkopf, A Tutorial on Support Vector Regression * (Kluwer Academic Publishers, Dordrecht, 2004)

    Book  Google Scholar 

  28. F. Pedregosa FABIANPEDREGOSA et al., Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot, 2011. http://scikit-learn.sourceforge.net.

  29. M.F. Sanner, Python: A Programming Language for Software Integration and Development. http://www.python.org/doc/Comparisons.html

  30. M. Akrom, S. Rustad, H. Kresno Dipojono, Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors. Results Chem. 6, 101126 (2023). https://doi.org/10.1016/J.RECHEM.2023.101126

    Article  CAS  Google Scholar 

  31. G.M. Masuku, W. Nxumalo, M.M. Kabanda, L.C. Murulana, I. Bahadur, Quinoxaline derivatives as corrosion inhibitors of zinc in 1.0 M hydrochloric and sulphuric acid solutions: adsorption, electrochemical, spectroscopic, and computational studies. J. Mol. Liq. 386, 122458 (2023). https://doi.org/10.1016/j.molliq.2023.122458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All calculations were performed using the Computation Facility at the Research Center for Materials Informatics, Universitas Dian Nuswantoro, Indonesia.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

MA: Writing—original draft, Data collection & construction, Conceptualization, Methodology, Investigation, and Analysis; SR: Conceptualization, Review, and Supervision; HKD: Conceptualization, Review, and Supervision.

Corresponding authors

Correspondence to Muhamad Akrom, Supriadi Rustad or Hermawan Kresno Dipojono.

Ethics declarations

Competing interests

The authors declare no competing financial interests or personal relationships that may have influenced the results reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 562 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akrom, M., Rustad, S. & Dipojono, H.K. SMILES-based machine learning enables the prediction of corrosion inhibition capacity. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00551-6

Keywords

Navigation