Skip to main content
Log in

Platinum nanoparticle synthesis in engineered organic nanoscale reactors for efficient oxygen electro-reduction in alkaline conditions

  • Advanced Catalytic Materials: Nano and Bulk Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We have designed a polymer, hc-TBtd-COP incorporating a Wurster-type redox-active building unit for the in situ reduction and nucleation of platinum nanoparticles which forms an organic polymer-wrapped metal nanoparticle composite. This composite exhibits exceptional mass activity (MA) (about 5 times larger than 20% Pt/C at 0.9 V vs. RHE) and specific activity (SA) (approximately 2 times larger than 20% Pt/C at 0.9 V vs. RHE) for the oxygen reduction reaction. The efficient electrocatalysis results from higher catalytic site dispersion and superior atom utilization efficiency. This research contributes to the advancement of composite materials for enhanced electrocatalytic performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. B. Garlyyev, K. Kratzl, M. Rück, J. Michalička, J. Fichtner, J.M. Macak, T. Kratky, S. Günther, M. Cokoja, A.S. Bandarenka, Optimizing the size of platinum nanoparticles for enhanced mass activity in the electrochemical oxygen reduction reaction. Angew. Chem. Int. Ed. 58, 9596 (2019). https://doi.org/10.1002/anie.201904492

    Article  CAS  Google Scholar 

  2. M. Eckardt, C. Gebauer, Z. Jusys, M. Wassner, N. Hüsing, R.J. Behm, Oxygen reduction reaction activity and long-term stability of platinum nanoparticles supported on titania and titania-carbon nanotube composites. J. Power. Sources 400, 580 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.036

    Article  CAS  Google Scholar 

  3. V. Mastronardi, E. Magliocca, J.S. Gullon, R. Brescia, P.P. Pompa, T.S. Miller, M. Moglianetti, Ultrasmall, coating-free, pyramidal platinum nanoparticles for high stability fuel cell oxygen reduction. ACS Appl. Mater. & Interfaces 14, 36570 (2022). https://doi.org/10.1021/acsami.2c07738

    Article  CAS  Google Scholar 

  4. I.H. Hafez, M.R. Berber, T. Fujigaya, N. Nakashima, Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts. Sci. Rep. 4, 6295 (2014). https://doi.org/10.1038/srep06295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Asahi, S.-I. Yamazaki, N. Taguchi, T. Ioroi, Facile approach to enhance oxygen reduction activity by modification of platinum nanoparticles by melamine-formaldehyde polymer. J. Electrochem. Soc. 166, F498 (2019). https://doi.org/10.1149/2.0641908jes

    Article  CAS  Google Scholar 

  6. H. Zhao, G. Yu, M. Yuan, J. Yang, D. Xu, Z. Dong, Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications. Nanoscale 10, 21466 (2018). https://doi.org/10.1039/C8NR05756G

    Article  CAS  PubMed  Google Scholar 

  7. M. Xu, C. Lai, X. Liu, B. Li, M. Zhang, F. Xu, S. Liu, L. Li, L. Qin, H. Yi, COF-confined catalysts: from nanoparticles and nanoclusters to single atoms. J. Mater. Chem. A 9, 24148 (2021). https://doi.org/10.1039/D1TA04439G

    Article  CAS  Google Scholar 

  8. L. Liu, A. Corma, Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244 (2021). https://doi.org/10.1038/s41578-020-00250-3

    Article  CAS  Google Scholar 

  9. S. Chen, Y. Zheng, B. Zhang, Y. Feng, J. Zhu, J. Xu, C. Zhang, W. Feng, T. Liu, Cobalt, nitrogen-doped porous carbon nanosheet-assembled flowers from metal-coordinated covalent organic polymers for efficient oxygen reduction. ACS Appl. Mater. Interfaces 11, 1384 (2019). https://doi.org/10.1021/acsami.8b16920

    Article  CAS  PubMed  Google Scholar 

  10. S. Bhunia, A. Peña-Duarte, H. Li, H. Li, M.F. Sanad, P. Saha, M.A. Addicoat, K. Sasaki, T.A. Strom, M.J. Yacamán, C.R. Cabrera, R. Seshadri, S. Bhattacharya, J.-L. Brédas, L. Echegoyen, [2,1,3]-Benzothiadiazole-spaced co-porphyrin-based covalent organic frameworks for O2 reduction. ACS Nano 17, 3492 (2023). https://doi.org/10.1021/acsnano.2c09838

    Article  CAS  PubMed  Google Scholar 

  11. J.-M. Seo, H.-J. Noh, J.-P. Jeon, H. Kim, G.-F. Han, S.K. Kwak, H.Y. Jeong, L. Wang, F. Li, J.-B. Baek, Conductive and ultrastable covalent organic framework/carbon hybrid as an ideal electrocatalytic platform. J. Am. Chem. Soc. 144, 19973 (2022). https://doi.org/10.1021/jacs.2c08344

    Article  CAS  PubMed  Google Scholar 

  12. J. Quinson, A. Dworzak, S.B. Simonsen, L.T. Kuhn, K.M. Jensen, A. Zana, M. Oezaslan, J.J. Kirkensgaard, M. Arenz, Surfactant-free synthesis of size controlled platinum nanoparticles: insights from in situ studies. Appl. Surf. Sci. 549, 149263 (2021). https://doi.org/10.1016/j.apsusc.2021.149263

    Article  CAS  Google Scholar 

  13. J. Quinson, J. Mathiesen, J. Schröder, A. Dworzak, F. Bizzotto, A. Zana, S.B. Simonsen, L.T. Kuhn, M. Oezaslan, K.Ø. Jensen, Teaching old precursors new tricks: fast room temperature synthesis of surfactant-free colloidal platinum nanoparticles. J. Colloid Interface Sci. 577, 319 (2020). https://doi.org/10.1016/j.jcis.2020.05.078

    Article  CAS  PubMed  Google Scholar 

  14. M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu, D. Ma, Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 7, 262 (2020). https://doi.org/10.1021/acscentsci.0c01486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Imaoka, Y. Akanuma, N. Haruta, S. Tsuchiya, K. Ishihara, T. Okayasu, W.-J. Chun, M. Takahashi, K. Yamamoto, Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat. Commun. 8, 688 (2017). https://doi.org/10.1038/s41467-017-00800-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Wang, Q. He, C. Wang, H. Jiang, C. Wu, S. Chen, G. Zhang, L. Song, Active Sites engineering toward superior carbon-based oxygen reduction catalysts via confinement pyrolysis. Small 14, 1800128 (2018). https://doi.org/10.1002/smll.201800128

    Article  CAS  Google Scholar 

  17. K. Jiang, S. Back, A.J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J.K. Nørskov, S. Siahrostami, Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019). https://doi.org/10.1038/s41467-019-11992-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T.F. Jaramillo, J.K. Nørskov, Y. Cui, High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156 (2018). https://doi.org/10.1038/s41929-017-0017-x

    Article  CAS  Google Scholar 

  19. W. Wang, L. Zhang, T. Wang, Z. Zhang, X. Wang, C. Cheng, X. Liu, Inner-pore reduction nucleation of palladium nanoparticles in highly conductive wurster-type covalent organic frameworks for efficient oxygen reduction electrocatalysis. J. Energy Chem. 77, 543 (2023). https://doi.org/10.1016/j.jechem.2022.11.032

    Article  CAS  Google Scholar 

  20. J.M. Rotter, R. Guntermann, M. Auth, A. Mähringer, A. Sperlich, V. Dyakonov, D.D. Medina, T. Bein, Highly conducting Wurster-type twisted covalent organic frameworks. Chem. Sci. 11, 12843 (2020). https://doi.org/10.1039/D0SC03909H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D. Taylor, S.J. Dalgarno, Z. Xu, F. Vilela, Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem. Soc. Rev. 49, 3981 (2020). https://doi.org/10.1039/C9CS00315K

    Article  CAS  PubMed  Google Scholar 

  22. K. Jie, Y. Zhou, Q. Sun, B. Li, R. Zhao, D.-E. Jiang, W. Guo, H. Chen, Z. Yang, F. Huang, S. Dai, Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nat. Commun. 11, 1086 (2020). https://doi.org/10.1038/s41467-020-14892-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.M. Abdelnaby, T.A. Saleh, M. Zeama, M.A. Abdalla, H.M. Ahmed, M.A. Habib, Azo-Linked porous organic polymers for selective carbon dioxide capture and metal ion removal. ACS Omega 7, 14535 (2022). https://doi.org/10.1021/acsomega.1c05905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Quan, S.-H. Yu, D.Y. Chung, A. Jin, J.H. Park, Y.-E. Sung, Y. Piao, Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci. Rep. 4, 5639 (2014). https://doi.org/10.1038/srep05639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Dang, H. Zou, Z. Xiong, S. Hou, T. Shu, H. Nan, X. Zeng, J. Zeng, S. Liao, High-performance, ultralow platinum membrane electrode assembly fabricated by in situ deposition of a Pt shell layer on carbon-supported Pd nanoparticles in the catalyst layer using a facile pulse electrodeposition approach. ACS Catal. 5, 4318 (2015). https://doi.org/10.1021/acscatal.5b00030

    Article  CAS  Google Scholar 

  26. J. Yang, S.H. Kim, S.K. Kwak, H.-K. Song, Curvature-induced metal-support interaction of an islands-by-islands composite of platinum catalyst and carbon nano-onion for durable oxygen reduction. ACS Appl. Mater. Interfaces 9, 23302 (2017). https://doi.org/10.1021/acsami.7b04410

    Article  CAS  PubMed  Google Scholar 

  27. L. Jiao, E. Liu, S. Hwang, S. Mukerjee, Q. Jia, Compressive strain reduces the hydrogen evolution and oxidation reaction activity of platinum in alkaline solution. ACS Catal. 11, 8165 (2021). https://doi.org/10.1021/acscatal.1c01723

    Article  CAS  Google Scholar 

  28. T. Xia, J. Liu, S. Wang, C. Wang, Y. Sun, L. Gu, R. Wang, Enhanced catalytic activities of NiPt truncated octahedral nanoparticles toward ethylene glycol oxidation and oxygen reduction in alkaline electrolyte. ACS Appl. Mater. Interfaces 8, 10841 (2016). https://doi.org/10.1021/acsami.6b01115

    Article  CAS  PubMed  Google Scholar 

  29. C.-S. Liu, X.-C. Liu, G.-C. Wang, R.-P. Liang, J.-D. Qiu, Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for oxygen reduction and methanol oxidation. J. Electroanal. Chem. 728, 41 (2014). https://doi.org/10.1016/j.jelechem.2014.06.024

    Article  CAS  Google Scholar 

  30. W. Chen, Q. Xiang, T. Peng, C. Song, W. Shang, T. Deng, J. Wu, Reconsidering the benchmarking evaluation of catalytic activity in oxygen reduction reaction. iScience (2020). https://doi.org/10.1016/j.isci.2020.101532

    Article  PubMed  PubMed Central  Google Scholar 

  31. J. Wang, G. Yin, Y. Shao, Z. Wang, Y. Gao, Platinum deposition on multiwalled carbon nanotubes by ion-exchange method as electrocatalysts for oxygen reduction. J. Electrochem. Soc. 154, B687 (2007). https://doi.org/10.1149/1.2737343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported as part of the Center for Alkaline Based Energy Solutions (CABES), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # DE-SC0019445. We would also like to acknowledge the financial support from NSF for the acquisition of the XPS equipment (NSF/CHEM 2216473) and the support from the XPS Surface Characterization Facility at the University of Texas at El Paso.

Funding

Center for Alkaline Based Energy Solutions (CABES), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # DE-SC0019445.

Author information

Authors and Affiliations

Authors

Contributions

SB and CRC performed the conception and design of this paper. SB and SC performed experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carlos R. Cabrera.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 390 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, S., Chatterjee, S. & Cabrera, C.R. Platinum nanoparticle synthesis in engineered organic nanoscale reactors for efficient oxygen electro-reduction in alkaline conditions. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00547-2

Keywords

Navigation