Skip to main content
Log in

2D and thin-film copper synthesized via magnetron sputtering

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Two-dimensional metals have gained great attention in recent years. However, most of these metals possess relatively strong chemical bonding in three directions; therefore, it is difficult to synthesize 2D metals. In this paper, we prepared 2D and thin- film copper materials via magnetron sputtering. 2D and thin-film copper are formed due to the accumulation of strain and stress associated with different coefficients of thermal expansion for the metal and substrate. SEM and AFM studies suggest that the minimum thickness of a freestanding single layer is approximately 1 nm, with lateral dimensions up to a few millimeters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  1. Y. Chen et al., Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. X. Liu, J.-C. Ren, T. Shen, S. Li, W. Liu, Lateral InSe p–n junction formed by partial doping for use in ultrathin flexible solar cells. J. Phys. Chem. Lett. 10, 7712–7718 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. K. Dong et al., Constructing efficient ternary PtTeCu nano-catalysts with 2D ultrathin-sheet structures for oxidation reaction of alcohols. Appl. Surf. Sci. 609, 155301 (2023)

    Article  CAS  Google Scholar 

  4. H. Wang et al., Interlayer-expanded 2D VS2 for fast response/recovery NO2 detection at low-temperature. Appl. Surf. Sci. 606, 154894 (2022)

    Article  CAS  Google Scholar 

  5. C. Du et al., Synthesis of ultra-thin 2D MnO2 nanosheets rich in oxygen vacancy defects and the catalytic oxidation of n-heptane. Appl. Surf. Sci. 606, 154846 (2022)

    Article  CAS  Google Scholar 

  6. S. Hwang et al., A facile approach towards Wrinkle-Free transfer of 2D-MoS2 films via hydrophilic Si3N4 substrate. Appl. Surf. Sci. 604, 154523 (2022)

    Article  CAS  Google Scholar 

  7. J. Liu, T. Shen, J.-C. Ren, S. Li, W. Liu, Role of van der Waals interactions on the binding energies of 2D transition-metal dichalcogenides. Appl. Surf. Sci. 608, 155163 (2023)

    Article  CAS  Google Scholar 

  8. Z. Fan, X. Huang, Y. Chen, W. Huang, H. Zhang, Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc. 12, 2367–2376 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. B. Lin et al., Centimeter-scale two-dimensional metallenes for high-efficiency electrocatalysis and sensing. ACS Mater. Lett. 5, 397–405 (2023)

    Article  CAS  Google Scholar 

  10. T. Wang et al., The controlled large-area synthesis of two dimensional metals. Mater. Today 36, 30–39 (2020)

    Article  MathSciNet  Google Scholar 

  11. R. Lazzari, J. Jupille, Silver layers on oxide surfaces: morphology and optical properties. Surf. Sci. 482–485, 823–828 (2001)

    Article  ADS  Google Scholar 

  12. C. Zhang et al., An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. (2014). https://doi.org/10.1002/adma.201306091

    Article  PubMed  PubMed Central  Google Scholar 

  13. T. Wang, M. Park, Q. Yu, J. Zhang, Y. Yang, Stability and synthesis of 2D metals and alloys: a review. Mater Today Adv 8, 100092 (2020)

    Article  Google Scholar 

  14. M.H. Kim et al., Maneuvering the growth of silver nanoplates: use of halide ions to promote vertical growth. J. Mater. Chem. C 2, 6165–6170 (2014)

    Article  CAS  Google Scholar 

  15. Z. Fan et al., Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7684 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  16. X. Huang et al., Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. L. Li et al., Two-dimensional transition metal honeycomb realized: Hf on Ir(111). Nano Lett. 13, 4671–4674 (2013)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. B. Zhang et al., 2D GeSe2 amorphous monolayer. Pure Appl. Chem. 91, 1787–1796 (2019)

    Article  CAS  Google Scholar 

  19. B. Zhang et al., A layered Ge2Sb2Te5 phase change material. Nanoscale 12, 3351–3358 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. B. Zhang et al., 2D metallic tungsten material. Appl. Surf. Sci. 530, 147231 (2020)

    Article  CAS  Google Scholar 

  21. B. Zhang et al., The structural modulation of amorphous 2D tungsten oxide materials in magnetron sputtering. Adv. Mater. Interfaces 9, 2201790 (2022)

    Article  CAS  Google Scholar 

  22. P. Gao, L.J. Meng, M.P. dos Santos, V. Teixeira, M. Andritschky, Influence of sputtering power and the substrate–target distance on the properties of ZrO2 films prepared by RF reactive sputtering. Thin Solid Films 377–378, 557–561 (2000)

    Article  Google Scholar 

  23. C. Huo, Z. Yan, X. Song, H. Zeng, 2D materials via liquid exfoliation: a review on fabrication and applications. Sci Bull (Beijing) 60, 1994–2008 (2015)

    Article  CAS  ADS  Google Scholar 

  24. M. Sennour, S. Lartigue-Korinek, Y. Champion, M.J. Hÿtch, HRTEM study of defects in twin boundaries of ultra-fine grained copper. Phil. Mag. 87, 1465–1486 (2007)

    Article  CAS  ADS  Google Scholar 

  25. T. Ma, T. Miyazawa, T. Fujii, Crystallographic features of deformation-kink bands in coplanar-double-slip-oriented copper single crystals. Mater Charact 177, 111151 (2021)

    Article  CAS  Google Scholar 

  26. F. Liu, Z. Liu, P. Lin, Z. Zhuang, Numerical investigations of helical dislocations based on coupled glide-climb model. Int. J. Plast. 92, 2–18 (2017)

    Article  Google Scholar 

  27. H. Qiu, F. Wang, P. Wu, L. Pan, Y. Tian, Structural and electrical properties of Cu films deposited on glass by DC magnetron sputtering. Vacuum 66, 447–452 (2002)

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The author thanks for financial support from the grant of the Ministry of Education, Youth- and Sports of Czech Republic (Grant No. LM2023037), the European Regional Development Fund Project, the project NANOMAT CZ.02.1.01/0.0/0.0/17_048/0007376 and the project of Faculty of Chemical Technology, University of Pardubice “Excellent teams”2023, the grant of Hebei Normal University (Grant No. L2021B12) and the HeBei NSF (Grant No. QN2023054).

Author information

Authors and Affiliations

Authors

Contributions

GW and BG: carried out the experiment. PJ: conducted COMSOL simulation. BZ: wrote the manuscript with support from TW. TW: supervised the project.

Corresponding authors

Correspondence to Bo Zhang or Tomas Wagner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1143 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, B., Wen, G., Zhang, B. et al. 2D and thin-film copper synthesized via magnetron sputtering. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00529-4

Keywords

Navigation