Skip to main content
Log in

Intelligent neuromorphic computing based on nanophotonics and metamaterials

  • Multifunctional Nanoscale Optics and Metamaterials Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

With the rapid development of artificial intelligence and computing chips approaching the bottleneck of power consumption and computing power, the research on intelligent computing hardware with high speed and high energy efficiency is an important trend. Recently, neuromorphic computing represented by photonic circuit neural networks and all-optical diffraction neural networks has attracted widespread attention due to their ultra-fast and ultra-efficient computing architectures. In this perspective, we first review some representative works and introduce them through two main lines of planar photonic circuit neural networks and three-dimensional diffraction neural networks to compare their characteristics and performance. We further discuss programmable designs for neuromorphic computing hardware, which bring it closer to general-purpose computing devices. Besides intelligent neural networks in the optical band, we also review the development and application of the diffractive neural networks in the microwave band, showing their programmable capabilities. Finally, we present the future directions and development trends of intelligent neuromorphic computing and its potential applications in wireless communications, information processing, and sensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding authors.

References

  1. D. Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. E.A. Van Dis, J. Bollen, W. Zuidema, R. van Rooij, C.L. Bockting, ChatGPT: five priorities for research. Nature 614, 224–226 (2023)

    Article  PubMed  ADS  Google Scholar 

  3. T. Brown et al., Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. X. Xu et al., Self-calibrating programmable photonic integrated circuits. Nat. Photon. 16, 595–602 (2022). https://doi.org/10.1038/s41566-022-01020-z

    Article  CAS  ADS  Google Scholar 

  5. J. Feldmann et al., Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). https://doi.org/10.1038/s41586-020-03070-1

    Article  CAS  PubMed  ADS  Google Scholar 

  6. J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. G. Wetzstein et al., Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). https://doi.org/10.1038/s41586-020-2973-6

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Y. Li, Y. Luo, D. Mengu, B. Bai, A. Ozcan, Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network. Light Adv. Manuf. (2023). https://doi.org/10.37188/lam.2023.017

    Article  Google Scholar 

  9. D. Mengu, Y. Luo, Y. Rivenson, A. Ozcan, Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron. (2020). https://doi.org/10.1109/JSTQE.2019.2921376

    Article  PubMed  Google Scholar 

  10. T. Wang et al., Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics 17, 408–415 (2023). https://doi.org/10.1038/s41566-023-01170-8

    Article  CAS  ADS  Google Scholar 

  11. T.W. Hughes, M. Minkov, Y. Shi, S. Fan, Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica (2018). https://doi.org/10.1364/optica.5.000864

    Article  Google Scholar 

  12. Y. Chen, T. Zhou, J. Wu, H. Qiao, X. Lin, L. Fang, Q. Dai, Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 9, eadf8437 (2023). https://doi.org/10.1126/sciadv.adf8437

    Article  PubMed  PubMed Central  Google Scholar 

  13. Y. Luo et al., Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl. 8, 112 (2019). https://doi.org/10.1038/s41377-019-0223-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. I.A.D. Williamson et al., Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–12 (2020). https://doi.org/10.1109/jstqe.2019.2930455

    Article  CAS  Google Scholar 

  15. Y. Shen et al., Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017). https://doi.org/10.1038/nphoton.2017.93

    Article  CAS  ADS  Google Scholar 

  16. X. Lin et al., All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). https://doi.org/10.1126/science.aat8084

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  17. F. Shokraneh, S. Geoffroy-Gagnon, M.S. Nezami, O. Liboiron-Ladouceur, A single layer neural network implemented by a $4\times 4$ MZI-based optical processor. IEEE Photon. J. 11, 1–12 (2019). https://doi.org/10.1109/jphot.2019.2952562

    Article  Google Scholar 

  18. M.M. Pour Fard et al., Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express 28, 12138–12148 (2020). https://doi.org/10.1364/OE.391473

    Article  PubMed  ADS  Google Scholar 

  19. T.W. Hughes, M. Minkov, Y. Shi, S.H. Fan, Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 5, 864–871 (2018). https://doi.org/10.1364/Optica.5.000864

    Article  ADS  Google Scholar 

  20. K. Liao et al., All-optical computing based on convolutional neural networks. Opto-Electron. Adv. 4, 200060–200060 (2021). https://doi.org/10.29026/oea.2021.200060

    Article  CAS  Google Scholar 

  21. R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund, Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X (2019). https://doi.org/10.1103/PhysRevX.9.021032

    Article  Google Scholar 

  22. T. Park, Y. Jeong, K. Yu, Cascaded optical resonator-based programmable photonic integrated circuits. Opt. Express 29, 4645–4660 (2021). https://doi.org/10.1364/OE.415545

    Article  CAS  PubMed  ADS  Google Scholar 

  23. H. Chen et al., Diffractive deep neural networks at visible wavelengths. Engineering 7, 1483–1491 (2021). https://doi.org/10.1016/j.eng.2020.07.032

    Article  Google Scholar 

  24. Yan, T. et al. in optoelectronic imaging and multimedia technology VI (2019)

  25. J. Li et al., Unidirectional imaging using deep learning–designed materials. Sci. Adv. 9, eadg1505 (2023)

    Article  PubMed  ADS  Google Scholar 

  26. T. Yan et al., Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123, 023901 (2019). https://doi.org/10.1103/PhysRevLett.123.023901

    Article  CAS  PubMed  ADS  Google Scholar 

  27. M.S.S. Rahman, J. Li, D. Mengu, Y. Rivenson, A. Ozcan, Ensemble learning of diffractive optical networks. Light Sci. Appl. 10, 14 (2021). https://doi.org/10.1038/s41377-020-00446-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. L. Zhang et al., Optical machine learning using time-lens deep neural networks. Photonics (2021). https://doi.org/10.3390/photonics8030078

    Article  PubMed  Google Scholar 

  29. J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein, Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018). https://doi.org/10.1038/s41598-018-30619-y

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. G. Qu et al., All-dielectric metasurface empowered optical-electronic hybrid neural networks. Laser Photon. Rev. 16, 2100732 (2022). https://doi.org/10.1002/lpor.202100732

    Article  CAS  ADS  Google Scholar 

  31. Y.-L. Xiao, S. Li, G. Situ, Z. You, Unitary learning for diffractive deep neural network. Opt. Lasers Eng. (2021). https://doi.org/10.1016/j.optlaseng.2020.106499

    Article  Google Scholar 

  32. J. Li et al., Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv. 7, eabd7690 (2021)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  33. E. Goi, S. Schoenhardt, M. Gu, Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks. Nat. Commun. 13, 7531 (2022). https://doi.org/10.1038/s41467-022-35349-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. X. Luo et al., Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 11, 158 (2022). https://doi.org/10.1038/s41377-022-00844-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. D. Mengu et al., Misalignment resilient diffractive optical networks. Nanophotonics 9, 4207–4219 (2020). https://doi.org/10.1515/nanoph-2020-0291

    Article  Google Scholar 

  36. J. Li, D. Mengu, Y. Luo, Y. Rivenson, A. Ozcan, Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photon. (2019). https://doi.org/10.1117/1.Ap.1.4.046001

    Article  Google Scholar 

  37. T. Zhou et al., Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021). https://doi.org/10.1038/s41566-021-00796-w

    Article  CAS  ADS  Google Scholar 

  38. T. Fu et al., On-chip photonic diffractive optical neural network based on a spatial domain electromagnetic propagation model. Opt. Express 29, 31924–31940 (2021). https://doi.org/10.1364/OE.435183

    Article  CAS  PubMed  ADS  Google Scholar 

  39. S. Zarei, M.R. Marzban, A. Khavasi, Integrated photonic neural network based on silicon metalines. Opt. Express 28, 36668–36684 (2020). https://doi.org/10.1364/OE.404386

    Article  CAS  PubMed  ADS  Google Scholar 

  40. T. Fu et al., Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023). https://doi.org/10.1038/s41467-022-35772-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Z. Wang, L. Chang, F. Wang, T. Li, T. Gu, Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat. Commun. 13, 2131 (2022). https://doi.org/10.1038/s41467-022-29856-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. E. Khoram et al., Nanophotonic media for artificial neural inference. Photon. Res. (2019). https://doi.org/10.1364/prj.7.000823

    Article  Google Scholar 

  43. V.J.U.F.N. Veselago, Electrodynamics of substances with simultaneously negative and. Usp. Fiz. Nauk 92, 517 (1967)

    Article  CAS  Google Scholar 

  44. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996). https://doi.org/10.1103/PhysRevLett.76.4773

    Article  CAS  PubMed  ADS  Google Scholar 

  45. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001). https://doi.org/10.1126/science.1058847

    Article  CAS  PubMed  ADS  Google Scholar 

  46. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218–e218 (2014). https://doi.org/10.1038/lsa.2014.99

    Article  ADS  Google Scholar 

  47. T.J. Cui et al., Information metamaterial systems. Iscience (2020). https://doi.org/10.1016/j.isci.2020.101403

    Article  PubMed  PubMed Central  Google Scholar 

  48. Q. Ma, T.J. Cui, Information metamaterials: bridging the physical world and digital world. PhotoniX 1, 1–32 (2020). https://doi.org/10.1186/s43074-020-00006-w

    Article  Google Scholar 

  49. Q. Ma et al., Digital coding metasurfaces: from theory to applications. IEEE Antennas Propag. Mag. 64, 96–109 (2022). https://doi.org/10.1109/MAP.2022.3169397

    Article  Google Scholar 

  50. T.J. Cui, S. Liu, G.D. Bai, Q. Ma, Direct transmission of digital message via programmable coding metasurface. Research 2019, 2584509 (2019). https://doi.org/10.34133/2019/2584509

    Article  PubMed  PubMed Central  Google Scholar 

  51. J.Y. Dai et al., Wireless communication based on information metasurfaces. IEEE Trans. Microw. Theory Tech. 69, 1493–1510 (2021). https://doi.org/10.1109/tmtt.2021.3054662

    Article  ADS  Google Scholar 

  52. L. Zhang et al., A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021). https://doi.org/10.1038/s41928-021-00554-4

    Article  Google Scholar 

  53. L. Chen et al., Touch-programmable metasurface for various electromagnetic manipulations and encryptions. Small (2022). https://doi.org/10.1002/smll.202203871

    Article  PubMed  PubMed Central  Google Scholar 

  54. L. Li et al., Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 1–9 (2019). https://doi.org/10.1038/s41377-019-0209-z

    Article  CAS  ADS  Google Scholar 

  55. Q. Ma et al., Smart metasurface with self-adaptively reprogrammable functions. Light-Sci. Appl. 8, 98 (2019). https://doi.org/10.1038/s41377-019-0205-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Q. Ma et al., Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. eLight (2022). https://doi.org/10.1186/s43593-022-00019-x

    Article  Google Scholar 

  57. Z. Gu et al., High-resolution programmable metasurface imager based on multilayer perceptron network. Adv. Opt. Mater. (2022). https://doi.org/10.1002/adom.202200619

    Article  Google Scholar 

  58. Q. Xiao et al., Electromagnetic brain–computer–metasurface holography. ACS Photon. (2023). https://doi.org/10.1021/acsphotonics.2c01349

    Article  Google Scholar 

  59. L. Li et al., Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019). https://doi.org/10.1038/s41467-019-09103-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. X. Gao et al., Programmable surface plasmonic neural networks for microwave detection and processing. Nat. Electron. 6, 319–328 (2023). https://doi.org/10.1038/s41928-023-00951-x

    Article  Google Scholar 

  61. C. Liu et al., A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022). https://doi.org/10.1038/s41928-022-00719-9

    Article  Google Scholar 

  62. C. Qian et al., Performing optical logic operations by a diffractive neural network. Light-Sci. Appl. (2020). https://doi.org/10.1038/s41377-020-0303-2

    Article  PubMed  PubMed Central  Google Scholar 

  63. C. Qian et al., Dynamic recognition and mirage using neuro-metamaterials. Nat. Commun. 13, 2694 (2022). https://doi.org/10.1038/s41467-022-30377-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. G. Xinxin, M.Q. Guze, C.W. Yi, C.T. Jun, C.C. Hou, Reconfigurable spoof localized surface plasmonic for frequency detections. Laser Photon. Rev. (2023). https://doi.org/10.1002/lpor.202300267

    Article  Google Scholar 

  65. X. Gao et al., Multimode and reconfigurable phase shifter of spoof surface plasmons. IEEE Trans. Antennas Propag. 71, 5361–5369 (2023). https://doi.org/10.1109/tap.2023.3262348

    Article  ADS  Google Scholar 

  66. X. Gao et al., Multifunctional terahertz spoof plasmonic devices. Adv. Mater. Technol. (2023). https://doi.org/10.1002/admt.202202050

    Article  Google Scholar 

  67. X. Gao et al., Reprogrammable spoof plasmonic modulator. Adv. Func. Mater. (2023). https://doi.org/10.1002/adfm.202212328

    Article  Google Scholar 

  68. X. Gao et al., Programmable multifunctional device based on spoof surface plasmon polaritons. IEEE Trans. Antennas Propag. 68, 3770–3779 (2020). https://doi.org/10.1109/tap.2020.2969745

    Article  ADS  Google Scholar 

  69. X. Gao et al., Nonmagnetic spoof plasmonic isolator based on parametric amplification. Laser Photon. Rev. (2022). https://doi.org/10.1002/lpor.202100578

    Article  Google Scholar 

  70. X. Gao et al., Reconfigurable parametric amplifications of spoof surface plasmons. Adv. Sci. 8, e2100795 (2021). https://doi.org/10.1002/advs.202100795

    Article  CAS  Google Scholar 

  71. X. Gao et al., Dynamic controls of second-harmonic generations in both forward and backward modes using reconfigurable plasmonic metawaveguide. Adv. Opt. Mater. (2020). https://doi.org/10.1002/adom.201902058

    Article  PubMed  PubMed Central  Google Scholar 

  72. X. Gao et al., Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip. IEEE Trans. Compon. Packag. Manuf. Technol. 9, 2267–2275 (2019). https://doi.org/10.1109/tcpmt.2019.2931373

    Article  CAS  Google Scholar 

  73. H.C. Zhang et al., A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci Appl 9, 113 (2020). https://doi.org/10.1038/s41377-020-00355-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. S.R. Joy, M. Erementchouk, H. Yu, P. Mazumder, Spoof plasmon interconnects—communications beyond RC limit. IEEE Trans. Commun. 67, 599–610 (2019). https://doi.org/10.1109/tcomm.2018.2874242

    Article  Google Scholar 

  75. Y.R. Xing Lin, N.T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, All-optical machine learning using diffractive deep neural networks. Science 7, 361 (2018)

    MathSciNet  Google Scholar 

  76. G. Qu et al., All-dielectric metasurface empowered optical-electronic hybrid neural networks. Laser Photon. Rev. (2022). https://doi.org/10.1002/lpor.202100732

    Article  Google Scholar 

  77. H. Zhang et al., An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021). https://doi.org/10.1038/s41467-020-20719-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. H.H. Zhu et al., Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13, 1044 (2022). https://doi.org/10.1038/s41467-022-28702-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. Y. Shi et al., Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nat. Commun. 13, 6048 (2022). https://doi.org/10.1038/s41467-022-33877-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. W.W. Tiankuang Zhou, J. Zhang, Yu. Shaoliang, Lu. Fang, Ultrafast dynamic machine vision with spatiotemporal photonic computing. Sci. Adv. 9, eadg4391 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  81. H. Dou et al., Residual D2NN: training diffractive deep neural networks via learnable light shortcuts. Opt. Lett. 45, 2688–2691 (2020). https://doi.org/10.1364/OL.389696

    Article  PubMed  ADS  Google Scholar 

  82. Y. Chen et al., Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 9, eadf8437 (2023). https://doi.org/10.1126/sciadv.adf8437

    Article  PubMed  PubMed Central  Google Scholar 

  83. Szegedy, C. et al. in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1–9

  84. P. Yao et al., Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4

    Article  CAS  PubMed  ADS  Google Scholar 

  85. T. Zhou, W. Wu, J. Zhang, S. Yu, L. Fang, Ultrafast dynamic machine vision with spatiotemporal photonic computing. Sci. Adv. 9, eadg4391 (2023). https://doi.org/10.1126/sciadv.adg4391

    Article  PubMed  PubMed Central  Google Scholar 

  86. Y. Chen et al., All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023). https://doi.org/10.1038/s41586-023-06558-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. C. Qian et al., Performing optical logic operations by a diffractive neural network. Light Sci. Appl. (2020). https://doi.org/10.1038/s41377-020-0303-2

    Article  PubMed  PubMed Central  Google Scholar 

  88. T. Cui, B. Bai, H.-B. Sun, Tunable metasurfaces based on active materials. Adv. Func. Mater. 29, 1806692 (2019). https://doi.org/10.1002/adfm.201806692

    Article  CAS  Google Scholar 

  89. Z. Zheng et al., Dual adaptive training of photonic neural networks. Nat. Mach. Intell. 5, 1119–1129 (2023). https://doi.org/10.1038/s42256-023-00723-4

    Article  Google Scholar 

  90. S. Venkatesh, X.Y. Lu, H. Saeidi, K. Sengupta, A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron. 3, 785–793 (2020). https://doi.org/10.1038/s41928-020-00497-2

    Article  CAS  Google Scholar 

  91. J. Park et al., All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021). https://doi.org/10.1038/s41565-020-00787-y

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  92. H. Kwon, T. Zheng, A. Faraon, Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces. Nat. Commun. 13, 5811 (2022). https://doi.org/10.1038/s41467-022-33449-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Hermans, A. et al. in 2022 Conference on Lasers and Electro-Optics (CLEO). 1–2.

  94. T. Zhou et al., In situ optical backpropagation training of diffractive optical neural networks. Photon. Res. 8, 940–953 (2020). https://doi.org/10.1364/PRJ.389553

    Article  CAS  Google Scholar 

  95. Y.M. Ning, Q. Ma, Q. Xiao, Z. Gu, T.J. Cui, Reprogrammable nonlinear transmission controls using an information metasurface. Adv. Opt. Mater. (2023). https://doi.org/10.1002/adom.202301525

    Article  Google Scholar 

  96. C.T.J. Gao Xinxin, Using surface plasmons to create programmable neural networks. Nat. Electron. 6, 266–267 (2023). https://doi.org/10.1038/s41928-023-00952-w

    Article  Google Scholar 

  97. M. Gu, Y. Dong, H. Yu, H. Luan, Q. Zhang, Perspective on 3D vertically-integrated photonic neural networks based on VCSEL arrays. Nanophotonics 12, 827–832 (2023). https://doi.org/10.1515/nanoph-2022-0437

    Article  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (62288101 and 92167202), the National Key Research and Development Program of China (2022YFA1404903, 2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), the Major Project of Natural Science Foundation of Jiangsu Province (BK20212002), the State Key Laboratory of Millimeter Waves, Southeast University, China (K201924), the Fundamental Research Funds for the Central Universities (2242023K5002, 2242018R30001, 2242022R20017), the 111 Project (111-2-05), and the China Postdoctoral Science Foundation (2242023K5002, 2021M700761, 2022T150112), Young Elite Scientists Sponsorship Program by CAST (2022QNRC001).

Author information

Authors and Affiliations

Authors

Contributions

T. J. Cui and Q. Ma initiated the plan and supervised the entire study. Q. Ma, X. Gao, and Z. Gu write the main part of the manuscript. L. Li, J. W. You, C. Liu, and T. J. Cui carried out the modifications and inspections. Q. Ma, X. Gao, Z. Gu, and T. J. Cui prepared the final manuscript with input from all authors. All authors discussed the research.

Corresponding author

Correspondence to Tie Jun Cui.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Gao, X., Gu, Z. et al. Intelligent neuromorphic computing based on nanophotonics and metamaterials. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00520-z

Keywords

Navigation