Skip to main content
Log in

Formability of low-molecular weight polyethylene oxide reinforced by tempo-oxidized nanocellulose for lithium-ion battery solid polymer electrolyte

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Utilizing low-molecular weight polyethylene oxide (L-PEO) for SPE using free-solvent casting technique presented a challenge in terms of electrochemical properties and formability issues. In this study, TEMPO-oxidized NC is utilized as a reinforcing agent to increase free volume and segmental motion of a solid-state L-PEO composite, which allows Li+ ion transport and prevents mechanical instability. During the breaking-forming process of Li–O bonds, ion transport occurs at a 40 EO/Li molar ratio, which is stabilized by NC structural network via intrachain or interchain hooping. The ion transport of the SPE-C electrolyte membrane fullfill Arrhenius behavior with increasing ionic conductivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. B. Smitha, S. Sridhar, A.A. Khan, J. Memb. Sci. 259, 10–26 (2005)

    Article  CAS  Google Scholar 

  2. Q. Zhai, F. Xiang, F. Cheng, Y. Sun, X. Yang, W. Lu, L. Dai, Energy Storage Mater. 33, 116–138 (2020)

    Article  Google Scholar 

  3. S. Mukherjee, A. Albertengo, T. Djenizian, Energy Storage Mater. 42, 773–785 (2021)

    Article  Google Scholar 

  4. D. Zhang, L. Zhang, K. Yang, H. Wang, C. Yu, D. Xu, B. Xu, L.M. Wang, A.C.S. Appl, Mater. Interfaces. 9, 36886–36896 (2017)

    Article  CAS  Google Scholar 

  5. E. Yulianti, H. Jodi, J. Sains Mater. Indones. 15 (2013).

  6. X. Li, S. Liu, J. Shi, M. Huang, Z. Shi, H. Wang, Z. Yan, Electrochim. Acta 445, 142062 (2023)

    Article  CAS  Google Scholar 

  7. J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang, X. He, Nano Converg. (2021). https://doi.org/10.1186/s40580-020-00252-5

    Article  Google Scholar 

  8. P. Kianfar, A. Vitale, S. Dalle Vacche, R. Bongiovanni, J. Mater. Sci. 56, 1879–1896 (2021)

    Article  CAS  Google Scholar 

  9. A. Poosapati, E. Jang, D. Madan, N. Jang, L. Hu, Y. Lan, MRS Commun. 9, 122–128 (2019)

    Article  CAS  Google Scholar 

  10. H. Zhang, C. Liu, L. Zheng, F. Xu, W. Feng, H. Li, Electrochim. Acta 133, 529–538 (2014)

    Article  CAS  Google Scholar 

  11. A.A. Teran, M.H. Tang, S.A. Mullin, N.P. Balsara, Solid State Ionics 203, 18–21 (2011)

    Article  CAS  Google Scholar 

  12. C. Huang, H. Ji, Y. Yang, B. Guo, L. Luo, Z. Meng, L. Fan, J. Xu, Carbohydr. Polym. 230, 115570 (2020)

    Article  CAS  Google Scholar 

  13. Z. Tang, W. Li, X. Lin, H. Xiao, Q. Miao, L. Huang, L. Chen, H. Wu, Polymers (Basel) 9, 3–4 (2017)

    Article  Google Scholar 

  14. H. Qin, K. Fu, Y. Zhang, Y. Ye, M. Song, Y. Kuang, S.H. Jang, F. Jiang, L. Cui, Energy Storage Mater. 28, 293–299 (2020)

    Article  Google Scholar 

  15. Q. Sabrina, C.R. Ratri, A. Hardiansyah, T. Lestariningsih, A. Subhan, A. Rifai, R. Yudianti, H. Uyama, RSC Adv. 11, 22929–22936 (2021)

    Article  CAS  Google Scholar 

  16. N. Masruchin, B.D. Park, V. Causin, I.C. Um, Cellulose 22, 1993–2010 (2015)

    Article  CAS  Google Scholar 

  17. D.Y. Kim, B.M. Lee, D.H. Koo, P.H. Kang, J.P. Jeun, Cellulose 23, 3039–3049 (2016)

    Article  CAS  Google Scholar 

  18. N.A. Stolwijk, C. Heddier, M. Reschke, M. Wiencierz, J. Bokeloh, G. Wilde, Macromolecules 46, 8580–8588 (2013)

    Article  CAS  Google Scholar 

  19. D. Martin-Vosshage, B.V.R. Chowdari, Solid State Ionics 62, 205–216 (1993)

    Article  CAS  Google Scholar 

  20. D. Martin-Vosshage, B.V.R. Chowdari, Science 40, 2109–2114 (1995)

    CAS  Google Scholar 

  21. C. Li, P. Xue, L. Chen, J. Liu, Z. Wang, Compos. Part B Eng. 234, 109729 (2022)

    Article  CAS  Google Scholar 

  22. N.S. Schauser, A. Nikolaev, P.M. Richardson, S. Xie, K. Johnson, E.M. Susca, H. Wang, R. Seshadri, R.J. Clément, J. Read De Alaniz, R.A. Segalman, ACS Macro Lett. 10, 104–109 (2021)

    Article  CAS  Google Scholar 

  23. P. Utpalla, S.K. Sharma, J. Prakash, J. Bahadur, M. Sahu, P.K. Pujari, Solid State Ionics 375, 115840 (2022)

    Article  CAS  Google Scholar 

  24. W. Chen, H. He, H. Zhu, M. Cheng, Y. Li, S. Wang, Polymers (Basel) (2018). https://doi.org/10.3390/polym10060592

    Article  Google Scholar 

  25. W. Kam, C.W. Liew, J.Y. Lim, S. Ramesh, Ionics (Kiel) 20, 665–674 (2014)

    Article  CAS  Google Scholar 

  26. N.S. Vrandečić, M. Erceg, M. Jakić, I. Klarić, Thermochim. Acta 498, 71–80 (2010)

    Article  Google Scholar 

  27. S.K. Vineeth, R.V. Gadhave, P.T. Gadekar, Open J. Polym. Chem. 09, 86–99 (2019)

    Google Scholar 

  28. H. Bennettand, G.J. Ouver, J. Chem. Educ. 70, A25 (1993)

    Google Scholar 

  29. P. Louette, F. Bodino, J.-J. Pireaux, Surf. Sci. Spectra 12, 59–63 (2005)

    Article  CAS  Google Scholar 

  30. K. E. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, Handbook X-Ray Photoelectron Spectrosc, 621–622 (1992).

  31. R. Grissa, V. Fernandez, N. Fairley, J. Hamon, N. Stephant, J. Rolland, R. Bouchet, M. Lecuyer, M. Deschamps, D. Guyomard, P. Moreau, A.C.S. Appl, Energy Mater. 1, 5694–5702 (2018)

    CAS  Google Scholar 

  32. J. Bidal, C. Cézard, B. Bouvier, C. Hadad, A. Nguyen Van Nhien, M. Becuwe, J. Colloid Interface Sci. 625, 734–742 (2022)

    Article  CAS  Google Scholar 

  33. W. Choi, H.C. Shin, J.M. Kim, J.Y. Choi, W.S. Yoon, J. Electrochem. Sci. Technol. 11, 1–13 (2020)

    Article  CAS  Google Scholar 

  34. W. Li, L. Chen, Y. Sun, C. Wang, Y. Wang, Y. Xia, Solid State Ionics 300, 114–119 (2017)

    Article  CAS  Google Scholar 

  35. Z. Tian, X. He, W. Pu, C. Wan, C. Jiang, Electrochim. Acta 52, 688–693 (2006)

    Article  CAS  Google Scholar 

  36. C.M. Costa, E. Lizundia, S. Lanceros-Méndez, Prog. Energy Combust. Sci. (2020). https://doi.org/10.1016/j.pecs.2020.100846

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Japan Society for the Promotion of Science for financial support of this work through the JSPS RONPAKU Program and the BRIN-JSPS Bilateral Project. The authors gratefully recognize the Advanced Characterization Laboratories in Serpong, the Research Center for Advanced Materials at the National Research and Innovation Agency, and Osaka University for their facilities and technical assistance.

Funding

This work was supported by the Japan Society for The Promotion of Science in the form of RONPAKU Program, the BRIN-JSPS Bilateral Project and Research Center for Advanced Material, and the National Research and Innovation Agency.

Author information

Authors and Affiliations

Authors

Contributions

QS: contributed to conceptualization, methodology, visualization, and writing of the original draft. RTY, KK, and NM: contributed to data curation. AS: carried out measurements. NM, AS, and Y-IH: contributed to resources and supervision. RY: contributed to conceptualization, visualization, writing of the original draft, and supervision. HU: contributed to conceptualization, supervision, and funding acquisition.

Corresponding author

Correspondence to Qolby Sabrina.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.66 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabrina, Q., Tri Yulianti, R., Khotimah, K. et al. Formability of low-molecular weight polyethylene oxide reinforced by tempo-oxidized nanocellulose for lithium-ion battery solid polymer electrolyte. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00514-x

Keywords

Navigation