Skip to main content
Log in

Boron-reinforced zinc oxide nanoparticles produced by the hydrothermal method: A novel antimicrobial agent

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, boron-doped zinc oxide (B/ZnO) nanoparticles (NPs) were synthesized using the hydrothermal method. Different boron (B) concentrations (5%, 10%, 15%, and 20% by weight) were chosen to produce B/ZnO nanocomposites. The antibacterial and anti-biofilm properties of the characterized B/ZnO NPs were also investigated against some pathogenic microorganisms. The NPs had a significant inhibitory effect on the microorganisms. The anti-biofilm analysis revealed that these NPs inhibited the biofilm formed by both Escherichia coli and Pseudomonas aeruginosa bacteria. Significantly, 20% B-doped ZnO nanocomposites are the most effective nanocomposite and can be used as an alternative to antibiotics for antimicrobial therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available online upon reasonable request from the authors.

References

  1. M.K.Y. Soliman, S.S. Salem, M. Abu, Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Appl. Biochem. Biotechnol. 195, 1158–1183 (2023). https://doi.org/10.1007/s12010-022-04199-7

    Article  CAS  PubMed  Google Scholar 

  2. P. Singh, S. Pandit, C. Jers, A.S. Joshi, J. Garnæs, Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci. Rep. 11, 1–13 (2021). https://doi.org/10.1038/s41598-021-92006-4

    Article  CAS  ADS  Google Scholar 

  3. B.Y. Öztürk, B.Y. Gürsu, İ Dağ, Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem. 89, 208–219 (2020). https://doi.org/10.1016/j.procbio.2019.10.027

    Article  CAS  Google Scholar 

  4. H.V. Kiranakumar, R. Thejas, C.S. Naveen, M. Ijaz Khan, G.D. Prasanna, R. Sathish et al., A review on electrical and gas sensing properties of reduced graphene oxide metal oxide nanocomposites. Biomass Convers. Biorefinery. 1, 1–11 (2022)

    Google Scholar 

  5. A. Phuruangrat, S. Siri, P. Wadbua, S. Thongtem, Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flower. J. Phys. Chem. Solids 126, 170–177 (2019). https://doi.org/10.1007/s13399-022-03258-7

    Article  CAS  ADS  Google Scholar 

  6. Y. Han, N. Pan, S. Liu, J. Chai, D. Li, Growth of nano metal oxide in surfactant-free microemulsion template and its catalytic mechanism simulation. J. Environ. Chem. Eng. 10(3), 108006 (2022). https://doi.org/10.1016/j.jece.2022.108006

    Article  CAS  Google Scholar 

  7. M. Muthukathija, M.S. Muhideen, V. Rama, Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Appl Surf Sci Adv. 15, 100400 (2023)

    Article  Google Scholar 

  8. A. Ejsmont, J. Goscianska, Hydrothermal synthesis of ZnO superstructures with controlled morphology via temperature and pH optimization. Materials (Basel) 16, 1641 (2023). https://doi.org/10.1016/j.apsadv.2023.100400

    Article  CAS  PubMed  ADS  Google Scholar 

  9. M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, M. Panjan, Panjan, Hydrothermal synthesis of hematite (a-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. J. Alloys Compd. 792, 599–609 (2019). https://doi.org/10.1016/j.jallcom.2019.03.414

    Article  CAS  Google Scholar 

  10. V. Tsikourkitoudi, B. Henriques-normark, G.A. Sotiriou, Inorganic nanoparticle engineering against bacterial infections. Curr. Opin. Chem. Eng. 38, 100872 (2022). https://doi.org/10.1016/j.coche.2022.100872

    Article  Google Scholar 

  11. A.M. Shehabeldine, B.H. Amin, F.A. Hagras, A.A. Ramadan, Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: time-kill kinetic essay and ultrastructure of pathogenic bacterial cell. Appl. Biochem. Biotechnol. 195, 467–485 (2023). https://doi.org/10.1007/s12010-022-04120-2

    Article  CAS  PubMed  Google Scholar 

  12. J. Shanmugapriya, C.A. Reshma, V. Srinidhi, K. Harithpriya, K.M. Ramkumar, D. Umpathy et al., Green synthesis of copper nanoparticles using Withania somnifera and its antioxidant and antibacterial activity. J. Nanomater. 2022, 1–9 (2022). https://doi.org/10.1155/2022/7967294

    Article  CAS  Google Scholar 

  13. D. MubarakAli, M.A.P. Manzoor, A. Sabarinathan, C. Anchana Devi, P.D. Rekha, N. Thajuddin, An investigation of antibiofilm and cytotoxic property of MgO nanoparticles. Biocatal. Agric. Biotechnol. J. 18, 101069 (2019). https://doi.org/10.1016/j.bcab.2019.101069

    Article  Google Scholar 

  14. P.P. Mahamuni, P.M. Patil, M.J. Dhanavade, M.V. Badiger, Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 17, 71–80 (2019). https://doi.org/10.1016/j.bbrep.2018.11.007

    Article  PubMed  Google Scholar 

  15. V.M. Dembitsky, A.A. Al Quntar, M. Srebnik, Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem. Rev. 111, 209–237 (2011). https://doi.org/10.1021/cr100093b

    Article  CAS  PubMed  Google Scholar 

  16. G.F.S. Fernandes, W.A. Denny, J.L. Dos Santos, Boron in drug design: recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 179, 791–804 (2019). https://doi.org/10.1016/j.ejmech.2019.06.092

    Article  CAS  PubMed  Google Scholar 

  17. H. Türkez, Ö.Ç. Yıldırım, S. Öner, A. Kadı, A. Mete, M.E. Arslan, İO. Şahin, Ö.E. Yapça, A. Mardinoğlu, Lipoic acid conjugated boron hybrids enhance wound healing and antimicrobial processes. Pharmaceutics 15(1), 149 (2022). https://doi.org/10.3390/pharmaceutics15010149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Kucukosman, Z. Isik, K. Ocakoglu, N. Dizge, S. Özdemir, M.S. Yalçın, P. Sharma, D. Balakrishnan, Boron-based magnesium diboride nanosheets preparation and tested for antimicrobial properties for PES membrane. Chemosphere 339, 139340 (2023). https://doi.org/10.1016/j.chemosphere.2023.139340

    Article  CAS  PubMed  Google Scholar 

  19. N.F. Andrade Neto, P. Zanatta, L.E. Nascimento, R.M. Nascimento, M.R.D. Bomio, F.V. Motta, Characterization and photoluminescent, photocatalytic and antimicrobial properties of boron-doped TiO2 nanoparticles obtained by microwave-assisted solvothermic method. J. Electron. Mater. 48, 3145–3156 (2019). https://doi.org/10.1007/s11664-019-07076-y

    Article  CAS  ADS  Google Scholar 

  20. A.H. Hashem, S.H. Rizk, M.A. Abdel-Maksoud, W.H. Al-Qahtani, H. AbdElgawad, G.S. El-Sayyad, Unveiling anticancer, antimicrobial, and antioxidant activities of novel synthesized bimetallic boron oxide-zinc oxide nanoparticles. RSC Adv. 13(30), 20856–20867 (2023). https://doi.org/10.1039/d3ra03413e

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. E. Kiray, Antibiofilm and anti-quorum sensing activities of vaginal origin probiotics. Eur. J. Biol. 80(2), 82–90 (2021). https://doi.org/10.26650/EurJBiol.2021.932640

    Article  CAS  ADS  Google Scholar 

  22. B. Kowalska-krochmal, R. Dudek-wicher, The minimum inhibitory concentration of antibiotics: methods, interpretation Clinical Relevance. Pathogens 4(2), 165 (2021). https://doi.org/10.3390/pathogens10020165

    Article  CAS  Google Scholar 

  23. N.A. Theodora, V. Dominika, D.E. Waturangi, Screening and quantification of anti-quorum sensing and antibiofilm activities of phyllosphere bacteria against biofilm forming bacteria. BMC. Res. Notes 12(732), 10–14 (2019). https://doi.org/10.1186/s13104-019-4775-1

    Article  CAS  Google Scholar 

  24. A.P. Dikshit, C. Mishra, D. Das, S.K.S. Parashar, Frequency and temperature-dependence ZnO based fractional order capacitor using machine learning. Mater. Chem. Phys. 307, 128097 (2023). https://doi.org/10.1016/j.matchemphys.2023.128097

    Article  CAS  Google Scholar 

  25. S. Anjum, M. Hashim, S.A. Malik, M. Khan, J.M. Lorenzo, B.H. Abbasi et al., Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel) 13, 4570 (2021). https://doi.org/10.3390/cancers13184570

    Article  CAS  PubMed  Google Scholar 

  26. S. Banerjee, K. Vishakha, S. Das, M. Dutta, D. Mukherjee, Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Colloids Surfaces B Biointerfaces. 190, 110921 (2020). https://doi.org/10.1016/j.colsurfb.2020.110921

    Article  CAS  PubMed  Google Scholar 

  27. P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22(12), 1825–1834 (2017). https://doi.org/10.1016/j.drudis.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  28. M. Kaushik, R. Niranjan, R. Thangam, B. Madhan, V. Pandiyarasan, Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 1169–1177 (2019). https://doi.org/10.1016/j.apsusc.2019.02.189

    Article  CAS  ADS  Google Scholar 

  29. V. Ahmad, M.O. Ansari, Synthesis, characterization, and evaluation of antimicrobial efficacy of reduced graphene–ZnO–copper nanocomplex. Antibiotics 12, 246 (2023). https://doi.org/10.3390/antibiotics12020246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: as a bionanocomposite. Int. J. Biol. Macromol. 129, 989–996 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.061

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study had no funding support.

Author information

Authors and Affiliations

Authors

Contributions

Concept: AT, EÇ; Design: AT, EÇ; Data Collection or Processing: AT, EÇ, ST; Analysis or Interpretation: AT, EÇ, ST, EK; Literature Search: AT, EÇ, ST; Writing: AT, EÇ, ST, EK.

Corresponding author

Correspondence to Esen Çakmak.

Ethics declarations

Conflict of interest

No conflict of interest was declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, E., Kiray, E., Tanrıverdi, A. et al. Boron-reinforced zinc oxide nanoparticles produced by the hydrothermal method: A novel antimicrobial agent. MRS Communications 14, 121–128 (2024). https://doi.org/10.1557/s43579-023-00513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00513-4

Keywords

Navigation