Skip to main content
Log in

Intra-molecular coupling within double-segmented molecules impacting magnetic tunnel junction-based molecular spintronics devices

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The intra-molecular coupling within multiple units of paramagnetic molecules can produce various effects on molecular spintronics devices (MSD). This paper focuses on double-segmented molecules as the device element to advance understanding of the Impact of internal molecular structure on magnetic tunnel junction-based MSD (MTJMSD). We performed Monte Carlo simulations (MCS) to fill the knowledge gap about the intramolecular coupling role in the magnetic properties of the MTJMSD. This study explored a double-segmented molecule containing two atomic sections, each with a net spin state interacting via Heisenberg exchange coupling within molecules and with ferromagnetic electrodes at different thermal energies, magnetic fields, and coupling strengths. This study also investigated the effect of magnetic field on the double-segmented molecule-based cross-junction-shaped MTJMSD. We also compared the effect of the magnetic field on the mono and double-segmented molecules when connected to two ferromagnetic electrodes. In the strong coupling regime, the intramolecular coupling and molecule coupling with the two ferromagnetic electrodes dominated the MTJMSD response near the molecular junction area. This study provides insight for evaluating the Impact of molecular nanostructure internal connectedness on the integrated MSD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data included in this paper is available upon reasonable request.

References

  1. A.J. Epstein, Organic-based magnets: opportunities in photoinduced magnetism, spintronics, fractal magnetism, and beyond. MRS Bull. 28(7), 492–499 (2003)

    Article  CAS  Google Scholar 

  2. M. Verdaguer, Rational synthesis of molecular magnetic materials: a tribute to Olivier Kahn. Polyhedron 20(11–14), 1115–1128 (2001)

    Article  CAS  Google Scholar 

  3. L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7(3), 179–186 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. A. Cornia, P. Seneor, Spintronics: the molecular way. Nat. Mater. 16, 505–506 (2017)

    Article  CAS  PubMed  ADS  Google Scholar 

  5. A. Cornia, P. Seneor, The molecular way. Nat. Mater. 16(5), 505–506 (2017)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. K.V. Raman, Interface-assisted molecular spintronics. Appl. Phys. Rev. 1(3), 031101 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Tyagi, C. Baker, C. D’Angelo, Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device. Nanotechnology 26(30), 305602 (2015)

    Article  PubMed  Google Scholar 

  8. G.X. Miao, M. Munzenberg, J.S. Moodera, Tunneling path toward spintronics. Rep. Prog. Phys. 74, 036501 (2011)

    Article  ADS  Google Scholar 

  9. J.R. Petta, S.K. Slater, D.C. Ralph, Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93(13), 136601 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. S. Sanvito, A.R. Rocha, Molecular-spintronics: the art of driving spin through molecules. J. Comp. Theor. Nanosci. 3(5), 624–642 (2006)

    Article  CAS  Google Scholar 

  11. J.R. Heath, Molecular electronics. Annu. Rev. Mater. Res. 39, 1–23 (2009)

    Article  CAS  ADS  Google Scholar 

  12. J.S. Moodera, J. Nowak, R.J.M. van de Veerdonk, Interface magnetism and spin wave scattering in ferromagnet-insulator-ferromagnet tunnel junctions. Phys. Rev. Lett. 80(13), 2941–2944 (1998)

    Article  CAS  ADS  Google Scholar 

  13. K. Inomata et al., Highly spin-polarized materials and devices for spintronics(∗). Sci. Technol. Adv. Mater. 9(1), 014101–014101 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  14. P. Tyagi, C. Riso, E. Friebe, Magnetic tunnel junction based molecular spintronics devices exhibiting current suppression at room temperature. Org. Electron. 64, 188–194 (2019)

    Article  CAS  Google Scholar 

  15. P. Tyagi, C. Riso, Magnetic force microscopy revealing long range molecule impact on magnetic tunnel junction based molecular spintronics devices. Org. Electron. 75, 105421 (2019)

    Article  CAS  Google Scholar 

  16. M. Savadkoohi et al., Impact of ferromagnetic electrode length and thickness on magnetic tunnel junction-based molecular spintronic devices (MTJMSD). Org. Electron. 102, 106429 (2022)

    Article  CAS  Google Scholar 

  17. D.F. Li et al., An S=6 cyanide-bridged octanuclear (Fe4Ni4II)-Ni-III complex that exhibits slow relaxation of the magnetization. J. Am. Chem. Soc. 128(13), 4214–4215 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. D.F. Li et al., Ancillary ligand functionalization of cyanide-bridged S = 6 FeIII4NiII4 complexes for molecule-based electronics. Inorg. Chem. 45(13), 7569 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. P. Tyagi, C. Baker, C. D’Angelo, Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device. Nanotechnology 26(30), 305602 (2015)

    Article  PubMed  Google Scholar 

  20. P. Tyagi, C. Baker, C. D’Angelo, Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device. Nanotechnology 26, 305602 (2015)

    Article  PubMed  Google Scholar 

  21. P. Tyagi, C. D’Angelo, C. Baker, Monte carlo and experimental magnetic studies of molecular spintronics devices. NANO 10, 1550056 (2015)

    Article  CAS  Google Scholar 

  22. J. Martinek et al., Kondo effect in the presence of itinerant-electron ferromagnetism studied with the numerical renormalization group method. Phys. Rev. Lett. 91(24), 247202 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. A.N. Pasupathy et al., The Kondo effect in the presence of ferromagnetism. Science 306(5693), 86–89 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  24. K. Baberschke, Why are spin wave excitations all important in nanoscale magnetism? Phys. Status Solidi A 245(1), 174–181 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the funding support from the National Science Foundation-CREST Award (Contract # HRD-1914751), Department of Energy/ National Nuclear Security Agency (DE-FOA-0003945), and National Aeronautics and Space Administration (NASA)/ Minority University Research and Education Project (MURP) grant (80NSSC19M0196).

Author information

Authors and Affiliations

Authors

Contributions

Pius conducted theoretical simulations using Monte Carlo Simulation Program designed for Magneti tunnel junction-based molecular device research. Marzieh, EM, BD, and CD helped analyze the simulation data. BD and EM also contributed to simulation studies. PT conducted the experimental study and contributed to data analysis and manuscript writing. CD wrote the Monte Carlo simulation code to simulate MTJMSD under the supervision and direction of Pawan. Pius analyzed the experimental and theoretical data and wrote the manuscript.

Corresponding author

Correspondence to Pawan Tyagi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1323 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, P.K., Grizzle, A., Mutunga, E. et al. Intra-molecular coupling within double-segmented molecules impacting magnetic tunnel junction-based molecular spintronics devices. MRS Communications 14, 103–113 (2024). https://doi.org/10.1557/s43579-023-00508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00508-1

Keywords

Navigation