Skip to main content
Log in

Simultaneous pH and glucose sensing and its relation in a non-enzymatic glucose sensor

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We explore glucose sensitivity as a function of pH in the electrochemical non-enzymatic sensor. The employed sensor consisted of a Cu/CuO working electrode, an Ag/AgCl reference electrode, and a graphite counter electrode. A minimum pH value of 12.5 was determined for glucose sensing in the 0–8 mM range, and the maximum glucose sensitivity of 304 µA/mMcm2 was obtained at a pH of 13. The pH sensing capabilities of the system were also explored to determine its viability as a correction variable for glucose detection with the sample's pH, obtaining a pH sensitivity of 40 mV/pH in the 11.0–13.5 range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M.P. Dysted, B. Esztergályos, S. Gautam, B. Helman, M. Pinkepank, A. Randi, A. Salim, K. Wallis, B. Yáñez Jiménez, M. Ysebaert, IDF Diabetes Atlas, 10th ed., 2021.

  2. Z. Golsanamlou, M. Mahmoudpour, J. Soleymani, A. Jouyban, Applications of advanced materials for non-enzymatic glucose monitoring: From invasive to the wearable device. Null. (2021). https://doi.org/10.1080/10408347.2021.2008227

    Article  Google Scholar 

  3. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. J. Kropff, J.H. DeVries, Continuous glucose monitoring, future products, and update on worldwide artificial pancreas projects. Diabet. Technol. Therapeut. 18, S253–S263 (2016). https://doi.org/10.1089/dia.2015.0345

    Article  Google Scholar 

  5. A.S. Bolla, R. Priefer, Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes Metab. Syndr.Metab. Syndr. 14, 739–751 (2020). https://doi.org/10.1016/j.dsx.2020.05.016

    Article  Google Scholar 

  6. G. Martinez-Saucedo, F.M. Cuevas-Muñiz, M. Sanchez-Fraga, I. Mejia, J.J. Alcantar-Peña, I.R. Chavez-Urbiola, Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples. Talanta 253, 123926–123933 (2023)

    Article  CAS  PubMed  Google Scholar 

  7. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta. Acta 180, 161–186 (2013)

    Article  CAS  Google Scholar 

  8. Q. Dong, Y. Huang, D. Song, H. Wu, F. Cao, Y. Lei, Dual functional rhodium oxide nanocorals enabled sensor for both nonenzymatic glucose and solid-state pH sensing. Biosens. Bioelectron.. Bioelectron. 112, 136–142 (2018)

    Article  CAS  Google Scholar 

  9. K. Tian, S. Alex, G. Siegel, A. Tiwari, Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Mater. Sci. Eng. C 46, 548–552 (2015). https://doi.org/10.1016/j.msec.2014.10.064

    Article  CAS  Google Scholar 

  10. M. Chen, X. Cao, K. Chang, H. Xiang, R. Wang, A novel electrochemical non-enzymatic glucose sensor based on Au nanoparticle-modified indium tin oxide electrode and boronate affinity. Electrochim. Acta. Acta 368, 137603 (2021). https://doi.org/10.1016/j.electacta.2020.137603

    Article  CAS  Google Scholar 

  11. Md.M. Rahman, A.J.S. Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors. 10, 4855–4886 (2010). https://doi.org/10.3390/s100504855

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. C. He, M. Asif, Q. Liu, F. Xiao, H. Liu, B.Y. Xia, Noble metal construction for electrochemical nonenzymatic glucose detection. Adv. Mater. Technol. 8, 2200272 (2023). https://doi.org/10.1002/admt.202200272

    Article  CAS  Google Scholar 

  13. I.R. Chavez-Urbiola, A.Y. Reséndiz-Jaramillo, F.J. Willars-Rodriguez, G. Martinez-Saucedo, L.G. Arriaga, J. Alcantar-Peña, R.A. Escalona-Villalpando, J. Ledesma-García, Glucose biosensor based on a flexible Au/ZnO film to enhance the glucose oxidase catalytic response. J. Electroanal. Chem.Electroanal. Chem. 926, 116941 (2022). https://doi.org/10.1016/j.jelechem.2022.116941

    Article  CAS  Google Scholar 

  14. X.H. Niu, L.B. Shi, H.L. Zhao, M.B. Lan, Advanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: A minireview. Anal. Methods 8, 1755–1764 (2016). https://doi.org/10.1039/C5AY03181H

    Article  CAS  Google Scholar 

  15. D. Cui, L. Su, H. Li, M. Li, C. Li, S. Xu, L. Qian, B. Yang, Non-enzymatic glucose sensor based on micro-/nanostructured Cu/Ni deposited on graphene sheets. J. Electroanal. Chem.Electroanal. Chem. 838, 154–162 (2019). https://doi.org/10.1016/j.jelechem.2019.03.005

    Article  CAS  Google Scholar 

  16. R. Yuan, H. Li, X. Yin, J. Lu, L. Zhang, 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode. Talanta 174, 514–520 (2017). https://doi.org/10.1016/j.talanta.2017.06.030

    Article  CAS  PubMed  Google Scholar 

  17. S. Shahrokhian, M. Ezzati, H. Hosseini, Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta 210, 120696 (2020). https://doi.org/10.1016/j.talanta.2019.120696

    Article  CAS  PubMed  Google Scholar 

  18. S.A. Zaidi, J.H. Shin, Recent developments in nanostructure-based electrochemical glucose sensors. Talanta 149, 30–42 (2016). https://doi.org/10.1016/j.talanta.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  19. J. Kim, A.S. Campbell, J. Wang, Wearable non-invasive epidermal glucose sensors: A review. Talanta 177, 163–170 (2018). https://doi.org/10.1016/j.talanta.2017.08.077

    Article  CAS  PubMed  Google Scholar 

  20. P. Tirado, I.R. Chavez-Urbiola, J.J. Alcantar-Peña, Ionic gel effect on a reference electrode in a flexible solid-state pH sensor. MRS Commun. 13, 41–46 (2023)

    Article  CAS  ADS  Google Scholar 

  21. H.M. Yadav, J.-J. Lee, One-pot synthesis of copper nanoparticles on glass: Applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J. Solid State Electrochem.Electrochem. 23, 503–512 (2018)

    Article  Google Scholar 

  22. B. Fall, D.D. Sall, M. Hémadi, A.K.D. Diaw, M. Fall, H. Randriamahazaka, S. Thomas, Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs). Sens. Actuators Rep. 5, 100136 (2023). https://doi.org/10.1016/j.snr.2022.100136

    Article  Google Scholar 

  23. Y. Mu, D. Jia, Y. He, Y. Miao, H.-L. Wu, Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron.. Bioelectron. 26, 2948–2952 (2011). https://doi.org/10.1016/j.bios.2010.11.042

    Article  CAS  Google Scholar 

  24. J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. ActaChim. Acta 709, 47–53 (2012). https://doi.org/10.1016/j.aca.2011.10.025

    Article  CAS  Google Scholar 

  25. Y. Mao, T. Chen, Y. Hu, K. Son, Ultra-thin 2D bimetallic MOF nanosheets for highly sensitive and stable detection of glucose in sweat for dancer. Discov. Nano. 18, 62 (2023). https://doi.org/10.1186/s11671-023-03838-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Manjakkal, D. Szwagierczak, R. Dahiya, Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci.. Mater. Sci. 109, 1–31 (2020)

    Google Scholar 

  27. X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B Chem. 144, 220–225 (2010). https://doi.org/10.1016/j.snb.2009.09.067

    Article  CAS  ADS  Google Scholar 

  28. D.-L. Zhou, J.-J. Feng, L.-Y. Cai, Q.-X. Fang, J.-R. Chen, A.-J. Wang, Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim. Acta. Acta 115, 103–108 (2014)

    Article  CAS  Google Scholar 

  29. J.-J. Xu, H.-Y. Chen, Amperometric glucose sensor based on glucose oxidase immobilized in electrochemically generated poly(ethacridine). Anal. Chim. ActaChim. Acta 423, 101–106 (2000). https://doi.org/10.1016/S0003-2670(00)01098-9

    Article  CAS  Google Scholar 

  30. C. Cobianu, B.-C. Serban, B.S. Hobbs, Lead-Free Electrochemical Galvanic Oxygen Sensor, US 9,557,289 B2, 2017.

Download references

Acknowledgments

The authors thank CONAHCYT for funding the research, project FORDECYT No. 297497 and No. 312048 (LANITEM). The authors are grateful for the facilities granted using CONMAD CIDESI’s infrastructure.

Funding

CONAHCYT financially supports this work with the projects FORDECYT No. 297497 and No. 312048 (LANITEM).

Author information

Authors and Affiliations

Authors

Contributions

PT: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing—original draft, review & editing; DD: Conceptualization, Funding acquisition, Project administration, Project administration, Resources, Supervision, Validation, Visualization, Writing—original draft, review & editing. AC: Conceptualization, Funding acquisition, Methodology, Project administration, Project administration, Resources, Supervision; JA & IRC-U: Conceptualization, Data curation, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing—original draft, review & editing; G. Olayo: Methodology, Resources, review & editing; J-AM: Methodology, Resources, review & editing; GM: Methodology, review & editing.

Corresponding author

Correspondence to I. R. Chávez-Urbiola.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1791 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirado Cantu, P., Alcantar Peña, J., Cruz Zabalegui, A. et al. Simultaneous pH and glucose sensing and its relation in a non-enzymatic glucose sensor. MRS Communications 14, 96–102 (2024). https://doi.org/10.1557/s43579-023-00506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00506-3

Keywords

Navigation