Skip to main content
Log in

Cadmium sulfide quantum dots decorated reduced graphene oxide: A versatile platform for highly sensitive acetylacetone sensor

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The intermixing of CdS QDs and graphene derivatives can provide a versatile platform for sensor materials. In this work, CdS QDs-reduced graphene oxide (rGO) composites were synthesized by low-temperature hydrothermal method and characterized through various techniques for morphological, structural, scattering, and optical properties. The prepared CdS QDs-rGO composites were applied as electroactive electrode for electrochemical detection of acetylacetone chemical. The sensitivity, linear dynamic range (LDR), and limit of detection (LOD) for fabricated CdS QDs-rGO/glassy carbon electrode (GCE) sensor were 43.6 μA μM−1 cm−2, 10–100 μM, and 15.4 μM, respectively. Thus, synthesized CdS QDs-rGO composites can be promising and reliable electron facilitators for the fabrication of sensitive, robust, and persistent electrochemical sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. V.N. Derepko, O.V. Ovchinnikov, M.S. Smirnov, I.G. Grevtseva, T.S. Kondratenko, A.S. Selyukov, S.Y. Turishchev, Plasmon-exciton nanostructures, based on CdS quantum dots with exciton and trap state luminescence. J. Lumin. 248, 118874 (2022)

    Article  CAS  Google Scholar 

  2. G. Yang, Y. He, J. Zhao, S. Chen, R. Yuan, Ratiometric electrochemiluminescence biosensor based on Ir nanorods and CdS quantum dots for the detection of organophosphorus pesticides. Sens. Actuators B Chem. 341, 130008 (2021)

    Article  CAS  Google Scholar 

  3. R.K. Sonker, R. Shastri, R. Johari, Superficial synthesis of CdS Quantum dots for an efficient Perovskite-Sensitized solar cell. Energy Fuels 35, 8430–8435 (2021)

    Article  CAS  Google Scholar 

  4. K. Zhuge, Z. Chen, Y. Yang, J. Wang, Y. Shi, Z. Li, In-suit photodeposition of MoS2 onto CdS quantum dots for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 539, 148234 (2021)

    Article  CAS  Google Scholar 

  5. R.K. Ratnesh, Hot injection blended tunable CdS quantum dots for production of blue LED and a selective detection of Cu2+ ions in aqueous medium. Opt. Laser Technol. 116, 103–111 (2019)

    Article  CAS  Google Scholar 

  6. M. Dun, J. Tan, W. Tan, M. Tang, X. Huang, CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery. Sens. Actuators B Chem. 298, 126839 (2019)

    Article  CAS  Google Scholar 

  7. A. Rasool, T.Z. Rizvi, Raman spectroscopy, thermal stability and dielectric properties of CdS Quantum dots polyaniline nanocomposites. Phys. B Condens. Matter. 646, 414291 (2022)

    Article  CAS  Google Scholar 

  8. I.H.J. Arellano, J. Mangadlao, I.B. Ramiro, K.F. Suazo, 3-component low temperature solvothermal synthesis of colloidal cadmium sulfide quantum dots. Mater. Lett. 64, 785–788 (2010)

    Article  CAS  Google Scholar 

  9. S. Dhar, B. Sen, S.K. Mukhopadhyay, T. Mukherjee, A.P. Chattopadhyay, S. Pramanik, CdS quantum dots embedded in PVP: Inorganic phosphate ion sensing in real sample and its antimicrobial activity, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 234, 118256 (2020)

    Article  CAS  Google Scholar 

  10. M.D. Rao, G. Pennathur, Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater. Res. Bull. 85, 64–73 (2017)

    Article  CAS  Google Scholar 

  11. K. Kandasamy, S. Surendhiran, Y.A. Syed Khadar, P. Rajasingh, Ultrasound-assisted microwave synthesis of CdS/MWCNTs QDs: A material for photocatalytic and corrosion inhibition activity. Mater. Today Proc. 47, 757–762 (2021)

    Article  CAS  Google Scholar 

  12. A. Rafique, M. Ikram, A. Haider, A. Ul-Hamid, S. Naz, W. Nabgan, J. Haider, I. Shahzadi, Dye degradation, antibacterial activity and molecular docking analysis of cellulose/polyvinylpyrrolidone-doped cadmium sulphide quantum dots. Int. J. Biol. Macromol. 214, 264–277 (2022)

    Article  CAS  Google Scholar 

  13. D.J. Rufina R, P. Thangavelu, Tuning the optical property of titania nanotubes array using CdS microemulsion sensitization for enhanced photocatalytic activity. Solid State Commun. 354, 114887 (2022)

    Article  CAS  Google Scholar 

  14. G.A. dos Santos, R.G. Capelo, C. Liu, D. Manzani, In-situ synthesis of luminescent CdS quantum dots embedded in phosphate glass. J. Non. Cryst. Solids. 587, 121599 (2022)

    Article  Google Scholar 

  15. A.W. Mureithi, Y. Sun, T. Mani, A.R. Howell, J. Zhao, Impact of hole scavengers on photocatalytic reduction of nitrobenzene using cadmium sulfide quantum dots. Cell Rep. Phys. Sci. 3, 100889 (2022)

    Article  CAS  Google Scholar 

  16. J.K. Widness, D.G. Enny, K.S. McFarlane-Connelly, M.T. Miedenbauer, T.D. Krauss, D.J. Weix, CdS quantum dots as potent photoreductants for organic chemistry enabled by Auger processes. J. Am. Chem. Soc. 144, 12229–12246 (2022)

    Article  CAS  Google Scholar 

  17. C. Kavitha, A review on reduced Graphene oxide hybrid nano composites and their prominent applications. Mater. Today Proc. 49, 811–816 (2022)

    Article  CAS  Google Scholar 

  18. L. Ma, X. Ai, Y. Lu, S. Yan, X.S. Wu, Development of a new synthetic strategy for highly reduced graphene oxide-CdS quantum-dot nanocomposites and their photocatalytic activity. J. Alloys Compd. 828, 154406 (2020)

    Article  CAS  Google Scholar 

  19. P.K. Gopi, G. Kesavan, S.-M. Chen, C.H. Ravikumar, Cadmium sulfide quantum dots anchored on reduced graphene oxide for the electrochemical detection of metronidazole. New J. Chem. 45, 3022–3033 (2021)

    Article  CAS  Google Scholar 

  20. Z. Guo, T. Hao, J. Duan, S. Wang, D. Wei, Electrochemiluminescence immunosensor based on graphene–CdS quantum dots–agarose composite for the ultrasensitive detection of alpha fetoprotein. Talanta 89, 27–32 (2012)

    Article  CAS  Google Scholar 

  21. Y.-J. Yang, Y.-H. Li, D. Liu, G.-H. Cui, A dual-responsive luminescent sensor based on a water-stable Cd(ii)-MOF for the highly selective and sensitive detection of acetylacetone and Cr2O72− in aqueous solutions. CrystEngComm 22, 1166–1175 (2020)

    Article  CAS  Google Scholar 

  22. W.S.J. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  23. Y. Ma, F. Yan, L. Liu, W. Wei, Z. Zhao, J. Sun, The enhanced photo-thermal therapy of surface improved photoactive cadmium sulfide (CdS) quantum dots entrenched graphene oxide nanoflakes in tumor treatment. J. Photochem. Photobiol. B Biol. 192, 34–39 (2019)

    Article  CAS  Google Scholar 

  24. R. Ranjan, A.S.K. Sinha, Optimizations of r GO supported CdS photo-electrocatalyst for dissociation of water. Int. J. Hydrogen Energy. 44, 5955–5969 (2019)

    Article  CAS  Google Scholar 

  25. F. Harnisch, S. Freguia, A Basic Tutorial on Cyclic Voltammetry for the Investigation of Electroactive Microbial Biofilms. Chem. An Asian J. 7, 466–475 (2012)

    Article  CAS  Google Scholar 

  26. S. Sun, B. Zhang, J. Wang, K. Li, Y. Gao, T.-Y. Zhang, Analytic formulas of peak current in cyclic voltammogram: machine learning as an alternative way? J. Chemom. 35, e3314 (2021)

    Article  CAS  Google Scholar 

  27. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018)

    Article  CAS  Google Scholar 

  28. M. Amiri, N. Alizadeh, Highly photosensitive near infrared photodetector based on polypyrrole nanoparticle incorporated with CdS quantum dots. Mater. Sci. Semicond. Process. 111, 104964 (2020)

    Article  CAS  Google Scholar 

  29. H.-J. Zhang, L.-Z. Liu, X.-R. Zhang, S. Zhang, F.-N. Meng, Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor. J. Alloys Compd. 788, 1103–1112 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the support of the Deputy for Research and Innovation- Ministry of Education, Kingdom of Saudi Arabia for this research through a grant (NU/IFC/2/SERC/-/15) under the Institutional Funding Committee at Najran University, Kingdom of Saudi Arabia. This paper was supported by the research fund for selected research-oriented professor in Jeonbuk National University in 2023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Umar or M. Shaheer Akhtar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, A., Kumar, R., Ibrahim, A.A. et al. Cadmium sulfide quantum dots decorated reduced graphene oxide: A versatile platform for highly sensitive acetylacetone sensor. MRS Communications 13, 1335–1341 (2023). https://doi.org/10.1557/s43579-023-00462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00462-y

Keywords

Navigation