Skip to main content
Log in

Degradation of congo red dye by thermally stable lead-free cesium titanium bromide (CsTiBr3) perovskite nanorods

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The nanorods of all-inorganic lead-free perovskite cesium titanium bromide (CsTiBr3) are synthesized by solvothermal method for the first time. The thermogravimetric analysis reveals that there are no phase transition and crystallization processes for a temperature range of 25–700°C. The CsTiBr3 perovskite nanorods exhibit excellent photocatalytic degradation of congo red (CR) dye. The CR dye has complete degradation within 60 min under direct sunlight exposure using 5 mg of CsTiBr3 as a catalyst. The XRD analysis of the catalyst after photocatalytic degradation ensures the reusability of CsTiBr3.The complete removal of organic components of the dye is confirmed by COD analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Authors are ready to make all data available on reasonable request.

References

  1. M.A.J. Kouhbanani, N. Beheshtkhoo, S. Taghizadeh, A.M. Amani, V. Alimardani, One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 10, 015007 (2019)

    CAS  Google Scholar 

  2. D.O. Oyeniran, T.O. Sogbanmu, T.A. Adesalu, Antibiotics, algal evaluations and subacute effects of abattoir wastewater on liver function enzymes, genetic and haematologic biomarkers in the freshwater fish, Clarias gariepinus. Ecotoxicol. Environ. Saf. 1(212), 111982 (2021)

    Article  Google Scholar 

  3. L. Ayed, A. Mahdhi, A. Cheref, A. Bakhrouf, Decolorization and degradation of azo dye methyl red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274(1–3), 272–277 (2011)

    Article  CAS  Google Scholar 

  4. A. Kumar, A. Kumar, V. Krishnan, Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 10(17), 10253–10315 (2020)

    Article  CAS  Google Scholar 

  5. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7(1), 167–172 (2016)

    Article  CAS  Google Scholar 

  6. W.F. Zhang, J. Tang, J. Ye, Photoluminescence and photocatalytic properties of SrSnO3 perovskite. Chem. Phys. Lett. 418(1–3), 174–178 (2006)

    Article  CAS  Google Scholar 

  7. J.A. Mares, C. Pedrini, B. Moine, K. Blazek, J. Kvapil, Optical studies of Ce3+-doped gadolinium aluminium perovskite single crystals. Chem. Phys. Lett. 206(1–4), 9–14 (1993)

    Article  CAS  Google Scholar 

  8. Z. Zhang, Z. Chen, J. Zhang, W. Chen, J. Yang, X. Wen, B. Wang, N. Kobamoto, L. Yuan, J.A. Stride, G.J. Conibeer, Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer. Adv. Energy Mater. 7(5), 1601773 (2017)

    Article  Google Scholar 

  9. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    Article  CAS  Google Scholar 

  10. I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012)

    Article  CAS  Google Scholar 

  11. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016)

    Article  CAS  Google Scholar 

  12. S. Shrestha, X. Li, H. Tsai, C.H. Hou, H.H. Huang, D. Ghosh, J.J. Shyue, L. Wang, S. Tretiak, X. Ma, W. Nie, Long carrier diffusion length in two-dimensional lead halide perovskite single crystals. Chem 8(4), 1107–1120 (2022)

    Article  CAS  Google Scholar 

  13. H. Fu, Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Sol. Energy Mater. Sol. Cells 1(193), 107–132 (2019)

    Article  Google Scholar 

  14. Q. Van Le, H.W. Jang, S.Y. Kim, Recent advances toward high-efficiency halide perovskite light-emitting diodes: review and perspective. Small Methods 2(10), 1700419 (2018)

    Article  Google Scholar 

  15. D. Yang, J. Lv, X. Zhao, Q. Xu, Y. Fu, Y. Zhan, A. Zunger, L. Zhang, Functionality-directed screening of Pb-free hybrid organic–inorganic perovskites with desired intrinsic photovoltaic functionalities. Chem. Mater. 29(2), 524–538 (2017)

    Article  CAS  Google Scholar 

  16. X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139(7), 2630–2638 (2017)

    Article  CAS  Google Scholar 

  17. M.G. Ju, M. Chen, Y. Zhou, H.F. Garces, J. Dai, L. Ma, N.P. Padture, X.C. Zeng, Earth-abundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett. 3(2), 297–304 (2018)

    Article  CAS  Google Scholar 

  18. J. Zhu, P.Z. Li, W. Guo, Y. Zhao, R. Zou, Titanium-based metal–organic frameworks for photocatalytic applications. Coord. Chem. Rev. 359, 80–101 (2018)

    Article  CAS  Google Scholar 

  19. M. Devi, M.R. Panigrahi, Effect of Mn doping on the optical and electrical properties of TiO2 thin film prepared by unconventional sol–gel route. IOP Conf. Ser.: Mater. Sci. Eng. 653(1), 012018 (2019)

    Article  CAS  Google Scholar 

  20. M.R. Panigrahi, M. Devi, Variation of optical and electrical properties of Zr doped TiO2 thin films with different annealing temperatures. J. Phys.: Conf. Ser. 1172(1), 012046 (2019)

    CAS  Google Scholar 

  21. M. Devi, M.R. Panigrahi, Effect of annealing temperature on the optical and electrical properties of Mg doped TiO2 thin films. Exp. Theor. Nanotechnol. 1, 69–79 (2017)

    Google Scholar 

  22. A.K. Sahoo, M.R. Panigrahi, Optical characterization of BMO thin film prepared by an unconventional sol-gel method. J. Sol–Gel Sci. Technol. 103(2), 565–575 (2022)

    Article  CAS  Google Scholar 

  23. M. Devi, M.R. Panigrahi, U.P. Singh, Synthesis of TiO2 nanocrystalline powder prepared by sol-gel technique using TiO2 powder reagent. Adv. Appl. Sci. Res 5(3), 140–145 (2014)

    Google Scholar 

  24. M. Chen, M.G. Ju, A.D. Carl, Y. Zong, R.L. Grimm, J. Gu, X.C. Zeng, Y. Zhou, N.P. Padture, Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558–570 (2018)

    Article  CAS  Google Scholar 

  25. K.B. Beegum, S. Sasi, A. Mathew, A.S. Asha, R. Reshmi, Nano fibers of lead free perovskite cesium titanium bromide (CsTiBr 3) thin films by in-house deposition technique. Phys. Scr. 96(5), 055707 (2021)

    Article  Google Scholar 

  26. D. Kong, D. Cheng, X. Wang, K. Zhang, H. Wang, K. Liu, H. Li, X. Sheng, L. Yin, Solution processed lead-free cesium titanium halide perovskites and their structural, thermal and optical characteristics. J. Mater. Chem. C 8(5), 1591–1597 (2020)

    Article  CAS  Google Scholar 

  27. G.K. Grandhi, A. Matuhina, M. Liu, S. Annurakshita, H. Ali-Löytty, G. Bautista, P. Vivo, Lead-free cesium titanium bromide double perovskite nanocrystals. Nanomaterials 11(6), 1458 (2021)

    Article  CAS  Google Scholar 

  28. R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31(4), 230–238 (2002)

    Article  CAS  Google Scholar 

  29. Joshi SS. Solar Induced CO 2 Reduction Achieved by Halide Tuning in Cesium Titanium (IV) Mixed Perovskite. In 2021 IEEE 21st International Conference on Nanotechnology (NANO) 2021 Jul 28 (pp. 299–302). IEEE.

  30. D. Cardenas-Morcoso, A.F. Gualdrón-Reyes, A.B. Ferreira Vitoreti, M. García-Tecedor, S.J. Yoon, M. de la SolisFuente, I. Mora-Seró, S. Gimenez, Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots. J. Phys. Chem. Lett. 10(3), 630–636 (2019)

    Article  CAS  Google Scholar 

  31. S. Niu, J. Milam-Guerrero, Y. Zhou, K. Ye, B. Zhao, B.C. Melot, J. Ravichandran, Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33, 4135–4143 (2018)

    Article  CAS  Google Scholar 

  32. A. Moquim, M.R. Panigrahi, Phase transition and relaxor nature of (Ba 0.77 Ca 0.23)(Ti 0.98 La 0.02) O 3 ceramic prepared by mixed oxide route. J. Mater. Sci.: Mater. Electron. 26, 4956–4962 (2015)

    CAS  Google Scholar 

  33. M.R. Panigrahi, S. Panigrahi, Phase transition and dielectric study in Ba 0.95 Dy 0.05 TiO3 ceramic. Bull. Mater. Sci. 34, 927–931 (2011)

    Article  CAS  Google Scholar 

  34. J.R. Chen, W.L. Wang, J.B. Li, G.H. Rao, X-ray diffraction analysis and specific heat capacity of (Bi1− xLax) FeO3 perovskites. J. Alloy. Compd. 459(1–2), 66–70 (2008)

    Article  CAS  Google Scholar 

  35. S.S. Abdullahi, S. Güner, Y.K. Musa, B.I. Adamu, M.I. Abdulhamid, Sımple method for the determınatıon of band gap of a nanopowdered sample usıng Kubelka Munk theory. NAMP J. 35, 241–246 (2016)

    Google Scholar 

  36. S.K. Mohamed, S.H. Hegazy, N.A. Abdelwahab, A.M. Ramadan, Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/Graphene oxide composite. Int. J. Biol. Macromol. 1(108), 1185–1198 (2018)

    Article  Google Scholar 

  37. K.A. Huynh, D.L. Nguyen, V.H. Nguyen, D.V. Vo, Q.T. Trinh, T.P. Nguyen, S.Y. Kim, Q.V. Le, Halide perovskite photocatalysis: progress and perspectives. J. Chem. Technol. Biotechnol. 95(10), 2579–2596 (2020)

    Article  CAS  Google Scholar 

  38. M. Thomas, G.A. Naikoo, M.U. Sheikh, M. Bano, F. Khan, Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. J. Photochem. Photobiol. A 15(327), 33–43 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge DST-SERB(CRG/2018/003785) for the financial support, STIC and Department of Physics-CUSAT, CMET Thrissur, and Union Christian College-Aluva for the characterizations provided.

Funding

This work was funded by DST-SERB, CRG/2018/003785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Reshmi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beegum, K.A.B., Thomas, C., Sasi, S. et al. Degradation of congo red dye by thermally stable lead-free cesium titanium bromide (CsTiBr3) perovskite nanorods. MRS Communications 13, 1281–1287 (2023). https://doi.org/10.1557/s43579-023-00452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00452-0

Keywords

Navigation