Skip to main content

Advertisement

Log in

Hydrogen sorption properties of Ti15.4Zr30.2Mn(54.4−xy)VxCryNiy alloy able of being activated at room temperature and pressure of 0.23 MPa

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Proposed Ti15.4Zr30.2Mn(54.4−xy)VxNiyCry alloy compositions are characterized by improved characteristics, in particular hydrogen saturation at room temperature and relatively low pressure, which makes them promising for using in hydrogen energy. It established that only part of the nickel introduced into the alloy dissolves in the Laves phase (type C14) and as a result, its phase composition and microstructure change. It was determined that the change in the phase composition of the alloy does not affect the kinetics of the hydrogen absorption process, but leads to a change hydrogen capacity and increase in the temperature at which all hydrogen release.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G. Principi, F. Agresti, A. Maddalena, S.L. Russo, Energy 34, 2087 (2009). https://doi.org/10.1016/j.energy.2008.08.027

    Article  CAS  Google Scholar 

  2. K.T. Moller, T.R. Jensen, E. Akiba, H.W. Li, Prog. Nat. Sci. 27, 34 (2017). https://doi.org/10.1016/j.pnsc.2016.12.014

    Article  CAS  Google Scholar 

  3. H. Barthelemy, M. Weber, F. Barbier, Int. J. Hydrog. Energy 42, 7254 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.178

    Article  CAS  Google Scholar 

  4. M. Hirscher, V.A. Yartys, M. Baricco, J. Bellosta von Colbe, D. Blanchard et al., J. Alloys Compd. 827, 153548 (2020). https://doi.org/10.1016/j.jallcom.2019.153548

    Article  CAS  Google Scholar 

  5. J.B. von Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso et al., Int. J. Hydrog. Energy 44, 7780 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.104

    Article  CAS  Google Scholar 

  6. V.A. Dekhtyarenko, D.G. Savvakin, V.I. Bondarchuk, V.M. Shyvanyuk, T.V. Pryadko, O.O. Stasiuk, Prog. Phys. Met. 22, 307 (2021). https://doi.org/10.15407/ufm.22.03.307

    Article  CAS  Google Scholar 

  7. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, V.I. Bondarchuk, G.S. Mogylnyy, Int. J. Hydrog. Energy 46, 8040 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.283

    Article  CAS  Google Scholar 

  8. A. Narvaez, Presentation at US DOE Ann Merit Review Meeting. Project ST 095 (2014)

  9. M.V. Lototskyy, I. Tolj, Y. Klochko, M.W. Davids, D. Swanepoel, V. Linkov, Int. J. Hydrog. Energy 45, 7958 (2020). https://doi.org/10.1016/j.ijhydene.2019.04.124

    Article  CAS  Google Scholar 

  10. O. Siddiqui, H. Ishaq, I. Dincer, Int. J. Hydrog. Energy 46, 33053 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.101

    Article  CAS  Google Scholar 

  11. I.D. Wijayanti, R. Denys, A.A. Volodin, M.V. Lototskyy, M.N. Guzik et al., J. Alloys Compd. 828, 154354 (2020). https://doi.org/10.1016/j.jallcom.2020.154354

    Article  CAS  Google Scholar 

  12. S. Samboshi, N. Masahashi, S. Hanada, J. Alloys Compd. 352, 210 (2003). https://doi.org/10.1016/S0925-8388(02)01125-8

    Article  Google Scholar 

  13. S. Samboshi, N. Masahashi, S. Hanada, Acta Mater. 49, 927 (2001). https://doi.org/10.1016/S1359-6454(00)00371-2

    Article  Google Scholar 

  14. J.L. Bobet, T.B. Darriet, Int. J. Hydrog. Energy 25, 767 (2000). https://doi.org/10.1016/S0360-3199(99)00101-9

    Article  CAS  Google Scholar 

  15. X. Yu, B. Xia, Z. Wu, N. Xu, Mater. Sci. Eng. A 373, 303 (2004). https://doi.org/10.1016/j.msea.2004.02.008

    Article  CAS  Google Scholar 

  16. A. Walnsch, M.J. Kriegel, O. Fabrichnaya, A. Leineweber, J. Phase Equilib. Diffus. 41, 457 (2020). https://doi.org/10.1007/s11669-020-00804-6

    Article  CAS  Google Scholar 

  17. T. Huang, Z. Wu, G. Sun, N. Xu, Intermetallics 15, 593 (2007). https://doi.org/10.1016/j.intermet.2006.10.035

    Article  CAS  Google Scholar 

  18. N. Bouaziz, M. Bouzid, A.B. Lamine, Int. J. Hydrog. Energy 43, 1615 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.049

    Article  CAS  Google Scholar 

  19. V.G. Ivanchenko, V.A. Dekhtyarenko, T.V. Pryadko, Powder Metall. Met. Ceram. 52, 340 (2013). https://doi.org/10.1007/s11106-013-9531-9

    Article  CAS  Google Scholar 

  20. V.A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol. 41(10), 1283 (2019). https://doi.org/10.15407/mfint.41.10.1283

    Article  CAS  Google Scholar 

  21. H. Smithson, C.A. Marianetti, D. Morgan, A. Van der Ven, A. Predith, G. Ceder, Phys. Rev. B. 66, 144107 (2002). https://doi.org/10.1103/PhysRevB.66.144107

    Article  CAS  Google Scholar 

  22. D.N. Movchan, V.N. Shyvanyuk, B.D. Shanina, V.G. Gavriljuk, Phys. Status Solidi (a) 207, 1796 (2010). https://doi.org/10.1002/pssa.200925548

    Article  CAS  Google Scholar 

  23. P. Liu, X. Xie, L. Xu, X. Li, T. Liu, Prog. Nat. Sci. 27, 652 (2017). https://doi.org/10.1016/j.pnsc.2017.09.007

    Article  CAS  Google Scholar 

  24. G.F. Kobzenko, A.A. Shkola, Mater. Diagn. 56, 41 (1990). (in Russian)

    CAS  Google Scholar 

  25. V.A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol. 43(8), 1053 (2021). https://doi.org/10.15407/mfint.43.08.1053

    Article  CAS  Google Scholar 

  26. J. Bodega, J.F. Fernández, F. Leardini, J.R. Ares, C. Sánchez, J. Phys. Chem. Solids 72(11), 1334 (2011). https://doi.org/10.1016/j.jpcs.2011.08.004

    Article  CAS  Google Scholar 

  27. T. L. Murashkina, Patterns of change in the structural-phase state and defective structure of the Laves intermetallic phase of the C36 TiCr2 structural polytype during cyclic hydrogen sorption/desorption processes (Abstract of diss. Candidate of Physical and Mathematical Sciences) (National Research Tomsk Polytechnic University, Tomsk, 2018)

  28. N.N. Greenwood, A. Earnshaw, Chemistry of the elements, 2nd edn. (Butterworth Heinemann, Oxford, 1997), p.1305

    Google Scholar 

  29. T.A. Zotov, V.N. Verbetskii, T.Y. Safonova, A.V. Garshev, O.A. Petriiz, Russ. J. Electrochem. 43(3), 355 (2007). https://doi.org/10.1134/S1023193507030147

    Article  CAS  Google Scholar 

  30. Z. Dehouche, M. Savard, F. Laurencelle, J. Goyette, J. Alloys Compd. 400, 276–280 (2005). https://doi.org/10.1016/j.jallcom.2005.04.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yu. Mykhailova.

Ethics declarations

Conflict of interest

On behalf of all authors, there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mykhailova, H.Y., Dekhtyarenko, V.A. & Vasylyk, Y.V. Hydrogen sorption properties of Ti15.4Zr30.2Mn(54.4−xy)VxCryNiy alloy able of being activated at room temperature and pressure of 0.23 MPa. MRS Communications 13, 1288–1295 (2023). https://doi.org/10.1557/s43579-023-00451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00451-1

Keywords

Navigation