Skip to main content
Log in

Element doping improving mechanical properties of β′ phase in Al–Mg–Si alloy

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The effect of element doping on the mechanical properties of β′-Mg9Si5 phase in Al–Mg-Si alloys are investigated using density-functional calculations. The results reveal that Mg17Si10Ge exhibits the highest degree of stability, attributed to its lower formation enthalpies. Doping of Ge and Zn elements may lead to a reduction in the material's hardness. Conversely, the addition of Al and Zn elements can significantly enhance the toughness and ductility of Mg17Si10X. The electron orbits of Si atoms are the primary influencing factor. The strength-ductility of these materials can be finely tuned by altering the charge transfer around the doping atoms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.L. Mao, S.G. Liu, W.L. Gao, J. Wang, D.Y. Liu, Effect of Zn or Zn + Cu addition on the precipitation in Al-Mg-Si alloys: a Review. Trans. Indian Inst. Met. 74, 2925 (2021)

    Article  CAS  Google Scholar 

  2. R. Vissers, M.A. Van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, The crystal structure of the βʹ phase in Al–Mg–Si alloys. Acta Mater. 55, 3815 (2007)

    Article  CAS  Google Scholar 

  3. S. Ji, M. Imai, H. Zhu, S. Yamanaka, Structural characterization of magnesium-based compounds Mg9Si5 and Mg4Si3Al (Superconductor) synthesized under high pressure and high temperature conditions. Inorg. Chem. 52, 3953 (2013)

    Article  CAS  Google Scholar 

  4. V. Singh, J.J. Pulikkotil, S. Auluck, Mg9Si5: a potential non-toxic thermoelectric material for mid-temperature applications. RSC Adv. 6, 62445 (2016)

    Article  CAS  Google Scholar 

  5. Y. Zheng, L.P. Bian, H.L. Ji, X.W. Liu, F. Tian, Influence of Ca and Mn on microstructure, mechanical properties, and electrical conductivity of As-Cast and heat-treated Al–Mg–Si Alloys. Rare Metal Mater. Engin. 51, 4010 (2022)

    CAS  Google Scholar 

  6. G.X. Lu, H.J. Chen, S.K. Guan, Effect of Sr on forming properties of Al-Mg-Si based alloy sheets. Trans. Nonferrous Met. Soc. China 16, s1489 (2006)

    Google Scholar 

  7. M. Liu, J. Banhart, Effect of Cu and Ge on solute clustering in Al–Mg–Si alloys. Mater. Sci. Engin. A 658, 238 (2016)

    Article  CAS  Google Scholar 

  8. R. Bjørge, S.J. Andersen, C.D. Marioara, J. Etheridge, R. Holmestad, Scanning transmission electron microscopy investigation of an Al–Mg–Si–Ge–Cu alloy. Philos. Mag. 92, 3983 (2012)

    Article  Google Scholar 

  9. F. Glöckel, P.J. Uggowitzer, P. Felfer, S. Pogatscher, H.W. Höppel, Influence of Zn and Sn on the precipitation behavior of new Al–Mg–Si Alloys. Materials 12, 2547 (2019)

    Article  Google Scholar 

  10. M.J. Yang, A. Orekhov, Z.Y. Hu, M. Feng, S.B. Jin, G. Sha, K. Li, V. Samaee, M. Song, Y. Du, G. Van Tendeloo, D. Schryvers, Shearing and rotation of β″ and β′ precipitates in an Al–Mg–Si alloy under tensile deformation: In-situ and ex-situ studies. Acta Mater. 220, 117310 (2021)

    Article  CAS  Google Scholar 

  11. M. Tamizifar, and G. W. Lorimer. Proc. 3rd Int. Conf. on Aluminium Alloys: Their Physical and Mechanical Properties, ed. L. Arnberg, O. Lohne, E. Nes and N. Ryum, 220 (1992)

  12. C. Ravi, C. Wolverton, First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta. Mater. 52, 4213 (2004)

    Article  CAS  Google Scholar 

  13. D. Zhao, L. Zhou, Y. Kong, A.J. Wang, J. Wang, Y.B. Peng, D. Yong, Y.F. Ouyang, W.Q. Zhang, Structure and thermodynamics of the key precipitated phases in the Al–Mg–Si alloys from first-principles calculations. J. Mater. Sci. 46, 7839 (2011)

    Article  CAS  Google Scholar 

  14. H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.Q. Chen, Z.K. Liu, Solvus boundaries of (meta) stable phases in the Al–Mg–Si system: first-principles phonon calculations and thermodynamic modeling. Calphad 34, 20 (2010)

    Article  CAS  Google Scholar 

  15. T. Saito, E.A. Mørtsell, S. Wenner, C.D. Marioara, S.J. Andersen, J. Friis, Matsuda, K.R. Holmestad, Atomic structures of precipitates in Al–Mg–Si alloys with small additions of other elements. Adv. Eng. Mater. 20, 1800125 (2018)

    Article  Google Scholar 

  16. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717 (2002)

    Article  CAS  Google Scholar 

  17. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electrongas correlation energy. Phys. Rev. B. 45, 13244 (1992)

    Article  CAS  Google Scholar 

  18. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 16, 1748 (1976)

    Google Scholar 

  19. T.H. Fischer, J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992)

    Article  CAS  Google Scholar 

  20. G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354 (2006)

    Article  Google Scholar 

  21. M.A. Van Huis, J.H. Chen, H.W. Zandbergen, M.H.F. Sluiter, Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution. Acta. Mater. 54, 2945 (2006)

    Article  Google Scholar 

  22. D.G. Clerc, H.M. Ledbetter, Mechanical hardness: a semiempirical theory based on screened electrostatics and elastic shear. J. Phys. chem. Solids. 59, 1071 (1998)

    Article  CAS  Google Scholar 

  23. B. Zhang, L. Wu, B. Wan, J. Zhang, Z. Li, H. Gou, Structural evolution, mechanical properties, and electronic structure of Al–Mg–Si compounds from first principles. J. Mater. Sci. 50, 6498 (2015)

    Article  CAS  Google Scholar 

  24. B.K. Li, J.K. Wang, C.H. Zhang, First-principles study on the effects of V, Nb, Cd, Ag, Ge and Sb doped in Al2CuMg phase of Al–Zn–Mg-Cu alloy. Mod. Phys. Lett. B. 35, 2150478 (2021)

    Article  CAS  Google Scholar 

  25. S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. Ser. 45, 823 (1954)

    Article  CAS  Google Scholar 

  26. Y.J. Tian, B. Xu, Z.S. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Metals. Hard. Mater. 33, 93 (2012)

    Article  CAS  Google Scholar 

  27. Y. Liu, W.C. Hua, D.J. Li, K. Li, H.L. Jin, Y.X. Xu, C.S. Xu, X.Q. Zeng, Mechanical, electronic and thermodynamic properties of C14 type AMg2 (A=Ca, Sr, Ba) compounds from first principles calculations. Comput. Mater. Sci. 97, 75 (2015)

    Article  CAS  Google Scholar 

  28. O.L. Anderson, Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single-crystal data. Phys. Acoustics. 3, 43 (1965)

    Article  Google Scholar 

  29. B. Chen, B.K. Li, J.K. Wang, C.H. Zhang, DFT investigation on the rare earth effects of Mg8Si3RE (RE=Sc, La, Ce, Yb) compounds. Solid. State. Commun. 330, 114269 (2021)

    Article  CAS  Google Scholar 

  30. N.A. Gaida, K. Niwa, T. Sasak, M. Hasegawa, Phase relations and thermoelasticity of magnesium silicide at high pressure and temperature. J. Chem. Phys. 154, 144701 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this study from the Fundamental Research Funds for the Central Universities (FRF-GF-20-25B). This work is also thankful for the Research Program of Beijing Municipal Education Commission (Nos. KM201910037001, KM201910037186).

Funding

Fundamental Research Funds for the Central Universities, FRF-GF-20-25B, Chuan-Hui Zhang, Beijing Municipal Education Commission, KM201910037001, Lianhong Ding, KM201910037186, Lianhong Ding

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianhong Ding or Chuan-Hui Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 296 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ding, L., Duan, M. et al. Element doping improving mechanical properties of β′ phase in Al–Mg–Si alloy. MRS Communications 13, 1187–1195 (2023). https://doi.org/10.1557/s43579-023-00427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00427-1

Keywords

Navigation