Skip to main content
Log in

DFT study of \({{Ru}_{2}FeZ (Z=Si, Ge, Sn)}\) for opto-electronic response calculations

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The opto-electronic properties of \(\rm {Ru}_{2}FeZ (Z=Si, Ge, Sn)\) full Heusler alloys are explored by using first-principles calculations. The wien2k package with Full potential-linearized augmented plane wave (FP + LAPW) method is used and the exchange–correlation functional is dealt within the framework of Generalized Gradient Approximation amended by Perdew–Burke–Ernzerhof. Electronic band structure and density of states in both spin channels show the overlapping of some valence and conduction bands, which confirms their metallic nature. Optical properties over a wide range of incident photon energy revealed their effectiveness in photo sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. F. Heusler, V. Dtsch, Mangan-aluminium-kupferlegierungen. Verh. DPG 5, 219 (1903)

    CAS  Google Scholar 

  2. F. Heusler, Über magnetische manganlegierungen. Verh. Dtsch. Phys. Ges 5(12), 219 (1903)

    CAS  Google Scholar 

  3. J. Winterlik, G.H. Fecher, C. Felser, Electronic and structural properties of palladium-based Heusler superconductors. Solid State Commun. 145(9–10), 475–478 (2008). https://doi.org/10.1016/j.ssc.2007.12.020

    Article  CAS  Google Scholar 

  4. Ouardi, S., Electronic structure and Physical properties of Heusler compounds for Thermoelectric and Spintronic Applications. 2012.

  5. S. Skaftouros et al., Search for spin gapless semiconductors: the case of inverse Heusler compounds. Appl. Phys. Lett. 102(2), 022402 (2013). https://doi.org/10.1063/1.4775599

    Article  CAS  Google Scholar 

  6. S. Krishnaveni, M. Sundareswari, Band gap engineering in ruthenium-based Heusler alloys for thermoelectric applications. Int. J. Energy Res. 42(2), 764–775 (2018). https://doi.org/10.1002/er.3864

    Article  CAS  Google Scholar 

  7. F. Casper et al., Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27(6), 063001 (2012). https://doi.org/10.1088/0268-1242/27/6/063001

    Article  CAS  Google Scholar 

  8. J. Kübler, A. William, C. Sommers, Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28(4), 1745 (1983). https://doi.org/10.1103/PhysRevB.28.1745

    Article  Google Scholar 

  9. M. Rizwan, A. Afaq, A. Aneeza, Lattice dynamics of Ru2FeX (X= Si, Ge) full heusler alloys. Physica B 537, 225–227 (2018). https://doi.org/10.1016/j.physb.2018.01.010

    Article  CAS  Google Scholar 

  10. A. Iftikhar et al., DFT study on thermo-elastic properties of Ru2Fe Z (Z= Si, Ge, Sn) Heusler alloys. Int. J. Mod. Phys. B 32(05), 1850045 (2018). https://doi.org/10.1142/S0217979218500455

    Article  CAS  Google Scholar 

  11. R. Pillay, R. Nagarajan, P. Tandon, Mössbauer studies in Ferromagnetic Ru2FeSn. Le Journal de Physique Colloques (1979). https://doi.org/10.1051/jphyscol:1979278

    Article  Google Scholar 

  12. A. Grover et al., Hyperfine fields at nonmagnetic atoms on various sites in ferromagnetic Heusler alloys. Physica Status Solidi (b) 98(2), 495–505 (1980). https://doi.org/10.1002/pssb.2220980211

    Article  CAS  Google Scholar 

  13. V. Patil et al., Hyperfine field investigations in some Ru and Rh based Heusler alloys. Physica Status Solidi (b) 118(1), 57–61 (1983)

    Article  CAS  Google Scholar 

  14. S. Mishra et al., Magnetic behaviour of the Heusler alloy Ru2FeSi. J. Magn. Magn. Mater. 51(1–3), 359–364 (1985). https://doi.org/10.1016/0304-8853(85)90036-8

    Article  CAS  Google Scholar 

  15. A. Szytuła, H. Ptasiewicz-Bak, J. Leciejewicz, Helicoidal magnetic structure of Ru2FeSi. J. Magn. Magn. Mater. 80(2–3), 195–199 (1989). https://doi.org/10.1016/0304-8853(89)90117-0

    Article  Google Scholar 

  16. B. Deka, R. Das, A. Srinivasan, Magnetic properties of Ge substituted Ru2FeSi alloys. J. Magn. Magn. Mater. 347, 101–104 (2013). https://doi.org/10.1016/j.jmmm.2013.07.058

    Article  CAS  Google Scholar 

  17. S. Belhachi, Electronic and magnetic properties of Ru2FeSi1− x Ge x Alloys in B2 structure: a first-principle study. J. Supercond. Novel Magn. 31(4), 1155–1159 (2018). https://doi.org/10.1007/s10948-017-4291-2

    Article  CAS  Google Scholar 

  18. B. Deka, A. Srinivasan, Magnetic and structural properties of (Ru1− xCox) 2FeSi alloys. Physica B 476, 118–121 (2015). https://doi.org/10.1016/j.physb.2015.03.006

    Article  CAS  Google Scholar 

  19. M. Yin, P. Nash, Standard enthalpies of formation of selected Ru2YZ Heusler compounds. J. Alloy. Compd. 634, 70–74 (2015). https://doi.org/10.1016/j.jallcom.2015.02.089

    Article  CAS  Google Scholar 

  20. A. Guezmir et al., Theoretical insight of stabilities and optoelectronic features of Ru-based Heusler alloys: Ab-initio calculations. Comput. Cond. Matter 28, e00573 (2021). https://doi.org/10.1016/j.cocom.2021.e00573

    Article  Google Scholar 

  21. Blaha, P., et al., wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 2001. 60. User’s Guide, WIEN2k 23.1 (Release 01/16/2023)

  22. P. Hohenberg, W. Kohn, Density functional theory (DFT). Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  23. J. Perdew, K. Burke, M. Ernzerhof, Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80(4), 891 (1998). https://doi.org/10.1103/PhysRevLett.80.891

    Article  CAS  Google Scholar 

  24. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  Google Scholar 

Download references

Funding

Authors do not receive any kind of funding for mention study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asim Nisar Sheikh or Abu Bakar.

Ethics declarations

Conflict of interest

All the other authors have read the manuscript “DFT Study of \({Ru}_{2}FeZ (Z=Si, Ge, Sn)\) for Opto-electronic Response Calculations” and are agreed to submit it in its current form for consideration for publication in your Journal, and there is no conflict of interests. The manuscript has not been published in any journal and has not been submitted to any journal simultaneously.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, A.N., Jamil, M.I., Afaq, A. et al. DFT study of \({{Ru}_{2}FeZ (Z=Si, Ge, Sn)}\) for opto-electronic response calculations. MRS Communications 13, 1180–1186 (2023). https://doi.org/10.1557/s43579-023-00426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00426-2

Keywords

Navigation