Skip to main content

Advertisement

Log in

Enhanced hydrogen generation by alcohols photoreforming using soluble cobalt phthalocyanine and ascorbic acid under ultrasonic treatment

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work reports the hydrogen production by homogeneous photoreforming assisted with ascorbic acid and ultrasound using a theraphthal, a water-soluble cobalt phthalocyanine salt. The homogeneous reactions were evaluated using mixtures of ethanol–water and isopropanol–water (50/50 v/v) under UV irradiation. A linear production of hydrogen through time was observed, showing higher generation using ethanol. The hydrogen amount keeps stable during three cycles of irradiation (~ 32 µmol). The H2 production is doubled with the combinative use of sonochemistry and UV irradiation, being related to the synergy effect between sonolytic and photolytic combined effects. Oxygen evolution in similar amounts was also observed.

Graphical abstract

Proposed mechanism for hydrogen generation using Theraphthal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the article and/or its Supplementary Information Files.

References

  1. R. Dias Wouters, P. Cristine Ladwig Muraro, D. Moro Druzian, A. Rossato Viana, E. de Oliveira Pinto, J.K.L. da Silva, B. Stefanello Vizzotto, Y.P. Moreno Ruiz, A. Galembeck, G. Pavoski, D.C. Romano Espinosa, W.L. da Silva, Zinc oxide nanoparticles: biosynthesis, characterization, biological activity and photocatalytic degradation for tartrazine yellow dye. J. Mol. Liq. 371, 121090 (2023)

    Article  Google Scholar 

  2. E.B. Agyekum, C. Nutakor, A.M. Agwa, S. Kamel, A critical review of renewable hydrogen production methods: factors affecting their scale-up and its role in future energy generation. Membranes 12, 173 (2022). https://doi.org/10.3390/membranes12020173

    Article  CAS  Google Scholar 

  3. J. Huang, Y. Wang, Efficient renewable-to-hydrogen conversion via decoupled electrochemical water splitting. Cell Rep. Phys. Sci. 1, 100138 (2020). https://doi.org/10.1016/j.xcrp.2020.100138

    Article  CAS  Google Scholar 

  4. M. Rajput, A. Brar, V. Vivekanand, N. Pareek, Recent Advancements in Biohydrogen Production: Thermochemical and Biological Conversion Routes. In Biohydrogen, 1st edn (Apple Academic Press, 2022). ISBN 9781003277156

  5. T. Li, T. Hu, L. Dai, C.M. Li, Metal-free photo- and electro-catalysts for hydrogen evolution reaction. J. Mater. Chem. A 8, 23674–23698 (2020). https://doi.org/10.1039/D0TA08704A

    Article  CAS  Google Scholar 

  6. F. Foroughi, J.J. Lamb, O.S. Burheim, B.G. Pollet, Sonochemical and sonoelectrochemical production of energy materials. Catalysts 11, 284 (2021). https://doi.org/10.3390/catal11020284

    Article  CAS  Google Scholar 

  7. J. Serafin, M. Ouzzine, J. Srenscek-Nazzal, J. Llorca, Photocatalytic hydrogen production from alcohol aqueous solutions over TiO2-activated carbon composites decorated with Au and Pt. J. Photochem. Photobiol. A 425, 113726 (2022)

    Article  CAS  Google Scholar 

  8. C.R. López, E. Pulido Melián, J.A. Ortega Méndez, D.E. Santiago, J.M. Doña Rodríguez, O. González Díaz, Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. J. Photochem. Photobiol. A 312, 45–54 (2015)

    Article  Google Scholar 

  9. A. Chang, W.-S. Peng, I.-T. Tsai, L.-F. Chiang, C.-M. Yang, Efficient hydrogen production by selective alcohol photoreforming on plasmonic photocatalyst comprising sandwiched Au nanodisks and TiO2. Appl. Catal. 255, 117773 (2019)

    Article  CAS  Google Scholar 

  10. F. Wen, J. Yang, X. Zong, B. Ma, D. Wang, C. Li, Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts. J. Catal. 281, 318–324 (2011)

    Article  CAS  Google Scholar 

  11. L.S. Almazroai, Enhancement of photocatalytic and sonophotocatalytic hydrogen evolution over sensitized Ag/TiO2. Mater. Res. Express 7, 095509 (2020). https://doi.org/10.1088/2053-1591/abb9e2

    Article  CAS  Google Scholar 

  12. R.D. Senevirathne, L.K. Abeykoon, N.L. De Silva, C.-F. Yan, J. Bandara, Sono-photocatalytic production of hydrogen by interface modified metal oxide insulators. Ultrason. Sonochem. 45, 279–285 (2028). https://doi.org/10.1016/j.ultsonch.2018.03.016

    Article  CAS  Google Scholar 

  13. S. Gopal Patra, T. Mondal, K. Sathiyan, A. Mizrahi, H. Kornweitz, D. Meyerstein, Na3[Ru2(μ-CO3)4] as a homogeneous catalyst for water oxidation; HCO3 as a co-catalyst. Catalysts 11, 281 (2021)

    Article  Google Scholar 

  14. W. Wang, X. Xu, W. Zhou, Z. Shao, Recent progress in metal–organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 4, 1600371 (2017)

    Article  Google Scholar 

  15. B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. 33, 2006042 (2021)

    Article  CAS  Google Scholar 

  16. T. Zhou, L. Wang, X. Huang, J. Unruangsri, H. Zhang, R. Wang, Q. Song, Q. Yang, W. Li, C. Wang, K. Takahashi, H. Xu, J. Jia Guo, PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat. Commun. 12, 3934 (2021)

    Article  CAS  Google Scholar 

  17. K. Meyer, M. Ranocchiari, J.A. van Bokhoven, Metal organic frameworks for photo-catalytic water splitting. Energy Environ. Sci. 8, 1923–1937 (2015)

    Article  CAS  Google Scholar 

  18. W. Han, M. Li, Y. Ma, J. Yang, Cobalt-based metal–organic frameworks and their derivatives for hydrogen evolution reaction. Front. Chem. 8, 592915 (2020)

    Article  CAS  Google Scholar 

  19. M. Asmaul Hoque, M. Gil-Sepulcre, A. de Aguirre, J.A.A.W. Elemans, D. Moonshiram, R. Matheu, Y. Shi, J. Benet-Buchholz, X. Sala, M. Malfois, E. Solano, J. Lim, A. Garzón-Manjón, C. Scheu, M. Lanza, F. Maseras, C. Gimbert-Suriñach, A. Llobet, Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nat. Chem. 12, 1060–1066 (2020)

    Article  Google Scholar 

  20. A.K. Vannucci, L. Alibabaei, M.D. Losego, J.J. Concepciona, B. Kalanyan, G.N. Parsons, T.J. Meyer, Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation. Proc. Natl Acad. Sci. USA 110(52), 20918–20922 (2013)

    Article  CAS  Google Scholar 

  21. Q. Li, Y. Bao, F. Bai, Porphyrin and macrocycle derivatives for electrochemical water splitting. MRS Bull. 45(7, Nanomaterials for Electrochemical Water Splitting), 569–573 (2020)

    Article  Google Scholar 

  22. Z. Abdi, R. Bagheri, Z. Song, M. Najafpour, Water oxidation by Ferritin: a semi-natural electrode. Sci. Rep. 9, 11499 (2019)

    Article  Google Scholar 

  23. M.S. Goizman, E.V. Degterev, K.F. Turchin, A.P. Arzamastsev, Quality control of theraphthal production. 1. Chemical composition. Pharm. Chem. J. 41(12), 670–675 (2007)

    Article  CAS  Google Scholar 

  24. A.V. Feofanov, A.I. Grichine, L.A. Shitova, T.A. Karmakova, R.I. Yakubovskaya, M. Egret-Charlier, P. Vigny, Confocal Raman microspectroscopy and imaging study of theraphthal in living cancer cells. Biophys. J. 78, 499–512 (2000)

    Article  CAS  Google Scholar 

  25. F. Cong, X. Wang, G. Gao, X. Du et al., Facile synthesis of a water-soluble cobalt phthalocyanine derivative. Asian J. Chem. 23(2), 645–648 (2011)

    CAS  Google Scholar 

  26. O.V. Kharissova, H.V. Rasika Dias, B.I. Kharisov, J. Jiang, Preparation of carbon nano-onions by the low-temperature unfolding of MWCNTs via interaction with theraphthal. RSC Adv. 5, 57764–57770 (2015)

    Article  CAS  Google Scholar 

  27. O.V. Kharissova, L.M. Torres Martínez, E. Luevano Hipólito, L.F. Garay-Rodríguez, M.R. Alfaro Cruz, B.I. Kharissov, High oxygen-yield homogeneous sonophotocatalysis for water-splitting using theraphthal. J. Photochem. Photobiol. A 437, 114463 (2023)

    Article  CAS  Google Scholar 

  28. W.-T. Chen, A. Chan, Z.H.N. Al-Azri, A.G. Dosado, M.A. Nadeem, D. Sun-Waterhouse, H. Idriss, G.I.N. Waterhouse, Effect of TiO2 polymorph and alcohol sacrificial agent on the activity of Au/TiO2 photocatalysts for H2 production in alcohol–water mixtures. J. Catal. 329, 499–513 (2015)

    Article  CAS  Google Scholar 

  29. D. Steinebrunner, G. Schnurpfeil, A. Wichmann, D. Wöhrle, A. Wittstock, Synergistic effect in zinc phthalocyanine—nanoporous gold hybrid materials for enhanced photocatalytic oxidations. Catalysts 9, 555 (2019)

    Article  CAS  Google Scholar 

  30. W. Marjit Singh, T. Baine, S. Kudo, S. Tian, X.A.N. Ma, H. Zhou, N.J. DeYonker, T. Chi Pham, J.C. Bollinger, D.L. Baker, B. Yan, C. Edwin Webster, X. Zhao, Electrocatalytic and photocatalytic hydrogen production in aqueous solution by a molecular cobalt complex. Angew. Chem. Int. Ed. 51(24), 5941–5944 (2012)

    Article  Google Scholar 

  31. S. Alizadeh Asli, M. Taghizadeh, Sonophotocatalytic degradation of pollutants by ZnO-based catalysts: a review. ChemistrySelect 5(43), 13720–13731 (2020)

    Article  Google Scholar 

  32. Y. Ou, J.-D. Lin, H.-M. Zou, D.-W. Liao, Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms. J. Mol. Catal. 241(1–2), 59–64 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CONACYT and UANL for financial support for this research through the following Projects: Cátedras CONACYT 1060, CONACYT-FC-1725, Paradigmas y Fronteras de la Ciencia 320379, PAICYT 2021 IT1766-21, PAICYT 342-CE-2022, and PAICYT 275-CE-2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Kharisov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharissova, O.V., Garay-Rodríguez, L.F., Luevano Hipólito, E. et al. Enhanced hydrogen generation by alcohols photoreforming using soluble cobalt phthalocyanine and ascorbic acid under ultrasonic treatment. MRS Communications 13, 1203–1208 (2023). https://doi.org/10.1557/s43579-023-00424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00424-4

Keywords

Navigation