Skip to main content
Log in

On the 3D printing of polyelectrolyte complexes: A novel approach to overcome rheology constraints

  • MRS 50th Anniversary Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Strong polyelectrolytes, poly(styrene sulfonate) (PSS), and poly(diallyldimethylammonium) (PDADMAC) dissolved in aqueous KBr can be 3D printed for the first time in the air via direct ink writing (DIW). Viscous polyelectrolyte complex (PEC) solutions were deposited layer-by-layer and quenched with deionized water to produce mechanically viable, viscoelastic hydrogel objects. Optimal inks were confirmed by rheology and thermogravimetric measurements to map flow behavior with material composition. Post-print handling and storage protocols were developed to produce printed resolutions more consistent with conventional DIW.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

All data for the work is either included in this manuscript or is part of the Electronic Supplementary Information file.

References

  1. E. Josef, H. Bianco-Peled, Conformation of a natural polyelectrolyte in semidilute solutions with no added salt. Soft Matter 8(35), 9156 (2012). https://doi.org/10.1039/c2sm25733e

    Article  CAS  Google Scholar 

  2. A. Reisch, E. Roger, T. Phoeung, C. Antheaume, C. Orthlieb, F. Boulmedais, P. Lavalle, J.B. Schlenoff, B. Frisch, P. Schaaf, On the benefits of rubbing salt in the cut: Self-healing of saloplastic PAA/PAH compact polyelectrolyte complexes. Adv. Mater. 26(16), 2547–2551 (2014). https://doi.org/10.1002/adma.201304991

    Article  CAS  Google Scholar 

  3. T.M. Fulghum, N.C. Estillore, C.-D. Vo, S.P. Armes, R.C. Advincula, Stimuli-responsive polymer ultrathin films with a binary architecture: Combined layer-by-layer polyelectrolyte and surface-initiated polymerization approach. Macromolecules 41(2), 429–435 (2008). https://doi.org/10.1021/ma0717136

    Article  CAS  Google Scholar 

  4. V.S. Meka, M.K.G. Sing, M.R. Pichika, S.R. Nali, V.R.M. Kolapalli, P. Kesharwani, A comprehensive review on polyelectrolyte complexes. Drug Discov. Today 22(11), 1697–1706 (2017). https://doi.org/10.1016/j.drudis.2017.06.008

    Article  CAS  Google Scholar 

  5. J.W. Park, K.H. Park, S. Seo, Natural polyelectrolyte complex-based PH-dependent delivery carriers using alginate and chitosan. J. Appl. Polym. Sci. 136(43), 48143 (2019). https://doi.org/10.1002/app.48143

    Article  CAS  Google Scholar 

  6. D. Mecerreyes, Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 36(12), 1629–1648 (2011). https://doi.org/10.1016/j.progpolymsci.2011.05.007

    Article  CAS  Google Scholar 

  7. E.M. Wilts, J. Herzberger, T.E. Long, Addressing water scarcity: Cationic polyelectrolytes in water treatment and purification: Addressing water scarcity. Polym. Int. 67(7), 799–814 (2018). https://doi.org/10.1002/pi.5569

    Article  CAS  Google Scholar 

  8. R.C. Advincula, J.R.C. Dizon, E.B. Caldona, R.A. Viers, F.D.C. Siacor, R.D. Maalihan, A.H. Espera, On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun. 11(5), 539–553 (2021). https://doi.org/10.1557/s43579-021-00069-1

    Article  CAS  Google Scholar 

  9. K. Akkaoui, M. Yang, Z.A. Digby, J.B. Schlenoff, Ultraviscosity in entangled polyelectrolyte complexes and coacervates. Macromolecules 53(11), 4234–4246 (2020). https://doi.org/10.1021/acs.macromol.0c00133

    Article  CAS  Google Scholar 

  10. R.F. Shamoun, H.H. Hariri, R.A. Ghostine, J.B. Schlenoff, Thermal transformations in extruded saloplastic polyelectrolyte complexes. Macromolecules 45(24), 9759–9767 (2012). https://doi.org/10.1021/ma302075p

    Article  CAS  Google Scholar 

  11. A.S. Michaels, R.G. Miekka, Polycation-polyanion complexes: Preparation and properties of poly-(vinylbenzyltrimethylammonium) poly(styrene sulfonate). J. Phys. Chem. 65(10), 1765–1773 (1961). https://doi.org/10.1021/j100827a020

    Article  CAS  Google Scholar 

  12. Q. Wang, J.B. Schlenoff, The polyelectrolyte complex/coacervate continuum. Macromolecules 47(9), 3108–3116 (2014). https://doi.org/10.1021/ma500500q

    Article  CAS  Google Scholar 

  13. Y. Chen, M. Yang, S.A. Shaheen, J.B. Schlenoff, Influence of nonstoichiometry on the viscoelastic properties of a polyelectrolyte complex. Macromolecules 54(17), 7890–7899 (2021). https://doi.org/10.1021/acs.macromol.1c01154

    Article  CAS  Google Scholar 

  14. P. Schaaf, J.B. Schlenoff, Saloplastics: Processing compact polyelectrolyte complexes. Adv. Mater. 27(15), 2420–2432 (2015). https://doi.org/10.1002/adma.201500176

    Article  CAS  Google Scholar 

  15. G. Decher, J. Schmitt, Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. In Trends in Colloid and Interface Science VI; Helm, C., Lösche, M., Möhwald, H., Eds.; Progress in Colloid & Polymer Science; Steinkopff: Darmstadt, 1992; Vol. 89, pp 160–164. https://doi.org/10.1007/BFb0116302.

  16. C.H. Porcel, J.B. Schlenoff, Compact polyelectrolyte complexes: “Saloplastic” candidates for biomaterials. Biomacromolecules 10(11), 2968–2975 (2009). https://doi.org/10.1021/bm900373c

    Article  CAS  Google Scholar 

  17. R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540(7633), 371–378 (2016). https://doi.org/10.1038/nature21003

    Article  CAS  Google Scholar 

  18. L. Li, Q. Lin, M. Tang, A.J.E. Duncan, C. Ke, Advanced polymer designs for direct-ink-write 3D printing. Chemistry 25(46), 10768–10781 (2019). https://doi.org/10.1002/chem.201900975

    Article  CAS  Google Scholar 

  19. S. Lankalapalli, V.R.M. Kolapalli, Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian J. Pharm. Sci. 71(5), 481 (2009). https://doi.org/10.4103/0250-474X.58165

    Article  CAS  Google Scholar 

  20. H. Wang, X. Zhou, J. Wang, X. Zhang, M. Zhu, H. Wang, Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation. Bioact. Mater. 17, 261–275 (2022). https://doi.org/10.1016/j.bioactmat.2022.01.030

    Article  CAS  Google Scholar 

  21. R.A. Ghostine, R.F. Shamoun, J.B. Schlenoff, Doping and diffusion in an extruded saloplastic polyelectrolyte complex. Macromolecules 46(10), 4089–4094 (2013). https://doi.org/10.1021/ma4004083

    Article  CAS  Google Scholar 

  22. F. Elahee, L. Rong, C. Breting, J. Bonilla-Cruz, T. Ceniceros, Z. Smith, J. Ge, X. Cheng, M. Xu, M. Yang, E. Ribeiro, E. Caldona, R. Advincula, Acrylic sealants as practicable direct ink writing (DIW) 3D-printable materials. MRS Commun. 13, 299–305 (2023)

    Article  CAS  Google Scholar 

  23. A. Espera, J. Dizon, A. Valino, Q. Chen, I. Silva, S. Nguyen, L. Rong, R. Advincula, On the 3D printability of silicone-based adhesives via viscous paste extrusion. MRS Commun. (2023). https://doi.org/10.1557/s43579-022-00318-x

    Article  Google Scholar 

  24. Q. Chen, J. Zhao, J. Ren, L. Rong, P.-F. Cao, R. Advincula, 3D printed multifunctional, hyperelastic silicone rubber foam. Adv. Func. Mater. 29(23), 1900469 (2019)

    Article  Google Scholar 

  25. D. Gutierrez, E. Caldona, Z. Yang, X. Suo, X. Cheng, S. Dai, R. Espiritu, R. Advincula, 3D-printed PDMS-based membranes for CO2 separation applications. MRS Commun. (2022). https://doi.org/10.1557/s43579-022-00287-1

    Article  Google Scholar 

  26. A. Stephen, S. Bhoyate, P. Cao, R. Advincula, N. Dahotre, Y. Jiang, W. Choi, 3D-printed flexible anode for high-performance zinc ion battery. MRS Commun. 12, 894–901 (2022)

    Article  CAS  Google Scholar 

  27. W. Niu, Z. Zhang, Q. Chen, P.-F. Cao, R. Advincula, Highly recyclable, mechanically isotropic and healable 3D-printed elastomers via polyurea vitrimers. ACS Mater. Lett. 3(8), 1095–1103 (2021)

    Article  CAS  Google Scholar 

  28. F. Siacor, Q. Chen, J. Zhao, L. Han, A. Valino, E. Taboada, E. Caldona, R. Advincula, On the additive manufacturing (3D printing) of viscoelastic materials and flow behavior: from composites to food manufacturing. Addit. Manuf. 5(23), 102043 (2021)

    Google Scholar 

  29. W. Hua, K. Mitchell, L. Raymond, B. Godina, D. Zhao, W. Zhou, Y. Jin, Fluid bath-assisted 3D printing for biomedical applications: from pre- to postprinting stages. ACS Biomater. Sci. Eng. 7(10), 4736–4756 (2021)

    Article  CAS  Google Scholar 

  30. H. Honaryar, S. Amirfattahi, Z. Niroobakhsh, Associative liquid-in-liquid 3D printing techniques for freeform fabrication of soft matter. Small 19(16), 2206524 (2023)

    Article  CAS  Google Scholar 

  31. H. Haoyu Wang, X. Xiaqing Zhou, J. Juan Wang, X. Xinping Zhang, M. Meifeng Zhu, H. Hongjun Wang, Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation. Bioact. Mater. 17, 261–275 (2022)

    Google Scholar 

  32. A. Singh, K. Pramanik, Fabrication and investigation of physicochemical and biological properties of 3D printed sodium alginate-chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application. J. Appl. Polym. Sci. 140(12), 53642 (2023)

    Article  Google Scholar 

  33. F. Zhu, L. Cheng, J. Yin, Z. Wu, J. Qian, J. Fu, Q. Zheng, 3D printing of ultratough polyion complex hydrogels. ACS Appl. Mater. Interfaces 8, 31304–31310 (2016)

    Article  CAS  Google Scholar 

  34. X. Meng, J. Schiffman, S. Perry, Cargo-containing polyelectrolyte complex fibers: Correlating molecular interactions to complex coacervate phase behavior and fiber formation. Macromolecules 51(21), 8821–8832 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge technical support from Frontier Laboratories and Quantum Analytics. This work (or part of this work) was conducted in Oak Ridge National Laboratory Center for Nanophase Materials Sciences by R. C. Advincula, a US Department of Energy Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto C. Advincula.

Ethics declarations

Conflict of interest

The authors declare no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rigoberto Advincula was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editormanuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MOV 81353 kb)

Supplementary file2 (MOV 13440 kb)

Supplementary file3 (MOV 4534 kb)

Supplementary file4 (DOCX 14864 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurago, A.A., Viers, R.A., Nguyen, A.T. et al. On the 3D printing of polyelectrolyte complexes: A novel approach to overcome rheology constraints. MRS Communications 13, 862–870 (2023). https://doi.org/10.1557/s43579-023-00415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00415-5

Keywords

Navigation